/**
* @file
* @brief C++ Program to find the modular inverse using [Fermat's Little
* Theorem](https://en.wikipedia.org/wiki/Fermat%27s_little_theorem)
*
* Fermat's Little Theorem state that \f[ϕ(m) = m-1\f]
* where \f$m\f$ is a prime number.
* \f{eqnarray*}{
* a \cdot x &≡& 1 \;\text{mod}\; m\\
* x &≡& a^{-1} \;\text{mod}\; m
* \f}
* Using Euler's theorem we can modify the equation.
*\f[
* a^{ϕ(m)} ≡ 1 \;\text{mod}\; m
* \f]
* (Where '^' denotes the exponent operator)
*
* Here 'ϕ' is Euler's Totient Function. For modular inverse existence 'a' and
* 'm' must be relatively primes numbers. To apply Fermat's Little Theorem is
* necessary that 'm' must be a prime number. Generally in many competitive
* programming competitions 'm' is either 1000000007 (1e9+7) or 998244353.
*
* We considered m as large prime (1e9+7).
* \f$a^{ϕ(m)} ≡ 1 \;\text{mod}\; m\f$ (Using Euler's Theorem)
* \f$ϕ(m) = m-1\f$ using Fermat's Little Theorem.
* \f$a^{m-1} ≡ 1 \;\text{mod}\; m\f$
* Now multiplying both side by \f$a^{-1}\f$.
* \f{eqnarray*}{
* a^{m-1} \cdot a^{-1} &≡& a^{-1} \;\text{mod}\; m\\
* a^{m-2} &≡& a^{-1} \;\text{mod}\; m
* \f}
*
* We will find the exponent using binary exponentiation. Such that the
* algorithm works in \f$O(\log m)\f$ time.
*
* Examples: -
* * a = 3 and m = 7
* * \f$a^{-1} \;\text{mod}\; m\f$ is equivalent to
* \f$a^{m-2} \;\text{mod}\; m\f$
* * \f$3^5 \;\text{mod}\; 7 = 243 \;\text{mod}\; 7 = 5\f$
*
Hence, \f$3^{-1} \;\text{mod}\; 7 = 5\f$
* or \f$3 \times 5 \;\text{mod}\; 7 = 1 \;\text{mod}\; 7\f$
* (as \f$a\times a^{-1} = 1\f$)
*/
#include
#include
/** Recursive function to calculate exponent in \f$O(\log n)\f$ using binary
* exponent.
*/
int64_t binExpo(int64_t a, int64_t b, int64_t m) {
a %= m;
int64_t res = 1;
while (b > 0) {
if (b % 2) {
res = res * a % m;
}
a = a * a % m;
// Dividing b by 2 is similar to right shift.
b >>= 1;
}
return res;
}
/** Prime check in \f$O(\sqrt{m})\f$ time.
*/
bool isPrime(int64_t m) {
if (m <= 1) {
return false;
} else {
for (int64_t i = 2; i * i <= m; i++) {
if (m % i == 0) {
return false;
}
}
}
return true;
}
/**
* Main function
*/
int main() {
int64_t a, m;
// Take input of a and m.
std::cout << "Computing ((a^(-1))%(m)) using Fermat's Little Theorem";
std::cout << std::endl << std::endl;
std::cout << "Give input 'a' and 'm' space separated : ";
std::cin >> a >> m;
if (isPrime(m)) {
std::cout << "The modular inverse of a with mod m is (a^(m-2)) : ";
std::cout << binExpo(a, m - 2, m) << std::endl;
} else {
std::cout << "m must be a prime number.";
std::cout << std::endl;
}
}