/** * \file * \brief Solve the equation \f$f(x)=0\f$ using [false position * method](https://en.wikipedia.org/wiki/Regula_falsi), also known as the Secant * method * * Given two points \f$a\f$ and \f$b\f$ such that \f$f(a)<0\f$ and * \f$f(b)>0\f$, then the \f$(i+1)^\text{th}\f$ approximation is given by: \f[ * x_{i+1} = \frac{a_i\cdot f(b_i) - b_i\cdot f(a_i)}{f(b_i) - f(a_i)} * \f] * For the next iteration, the interval is selected * as: \f$[a,x]\f$ if \f$x>0\f$ or \f$[x,b]\f$ if \f$x<0\f$. The Process is * continued till a close enough approximation is achieved. * * \see newton_raphson_method.cpp, bisection_method.cpp */ #include #include #include #include #define EPSILON \ 1e-6 // std::numeric_limits::epsilon() ///< system accuracy limit #define MAX_ITERATIONS 50000 ///< Maximum number of iterations to check /** define \f$f(x)\f$ to find root for */ static double eq(double i) { return (std::pow(i, 3) - (4 * i) - 9); // origial equation } /** get the sign of any given number */ template int sgn(T val) { return (T(0) < val) - (val < T(0)); } /** main function */ int main() { double a = -1, b = 1, x, z, m, n, c; int i; // loop to find initial intervals a, b for (int i = 0; i < MAX_ITERATIONS; i++) { z = eq(a); x = eq(b); if (sgn(z) == sgn(x)) { // same signs, increase interval b++; a--; } else { // if opposite signs, we got our interval break; } } std::cout << "\nFirst initial: " << a; std::cout << "\nSecond initial: " << b; for (i = 0; i < MAX_ITERATIONS; i++) { m = eq(a); n = eq(b); c = ((a * n) - (b * m)) / (n - m); a = c; z = eq(c); if (std::abs(z) < EPSILON) { // stoping criteria break; } } std::cout << "\n\nRoot: " << c << "\t\tSteps: " << i << std::endl; return 0; }