/** * @file * @brief A fast Fourier transform (FFT) is an algorithm that computes the * discrete Fourier transform (DFT) of a sequence , or its inverse (IDFT) , this algorithm * has application in use case scenario where a user wants to find points of a function * in short period time by just using the coefficents of the polynomial function. * @details * https://medium.com/@aiswaryamathur/understanding-fast-fourier-transform-from-scratch-to -solve-polynomial-multiplication-8018d511162f * @author [Ameya Chawla](https://github.com/ameyachawlaggsipu) */ #include /// for IO operations #include /// for mathematical-related functions #include /// for storing points and coefficents #include /// for assert # define pi 3.14159265358979323846 /** * @brief FastFourierTransform is a recursive function which returns list of complex numbers * @param p List of Coefficents in form of complex numbers * @param n Count of elements in list p * @returns p if n==1 * @returns y if n!=1 */ std::complex* FastFourierTransform(std::complex*p,uint64_t n) { if(n==1) return p; ///Base Case To return std::complex om=std::complex(cos(2*pi/n),sin(2*pi/n)); ///Calculating value of omega std::complex *pe= new std::complex[n/2]; /// Coefficents of even power std::complex *po= new std::complex[n/2]; ///Coefficents of odd power uint64_t k1=0,k2=0; for(uint64_t j=0;j*ye=FastFourierTransform(pe,n/2);///Recursive Call std::complex*yo=FastFourierTransform(po,n/2);///Recursive Call std::complex*y=new std::complex[n];///Final value representation list for(uint64_t i=0;i t1[2]={1,2};///Test case 1 std::complex t2[4]={1,2,3,4};///Test case 2 uint8_t n1=sizeof(t1)/sizeof(std::complex); uint8_t n2=sizeof(t2)/sizeof(std::complex); std::complex r1[2]={{3,0},{-1,0} };///True Answer for test case 1 std::complex r2[4]={{10,0},{-2,-2},{-2,0},{-2,2} };///True Answer for test case 2 std::complex *o1=FastFourierTransform(t1,n1); std::complex *o2=FastFourierTransform(t2,n2); for(uint8_t i=0;ireal()<0.000000000001 ) && (r1[i].imag()-o1->imag()<0.000000000001 ));/// Comparing for both real and imaginary values for test case 1 o1++; } for(uint8_t i=0;ireal()<0.000000000001 ) && ( r2[i].imag()-o2->imag()<0.000000000001 ));/// Comparing for both real and imaginary values for test case 2 o2++; } } /** * @brief Main function * @param argc commandline argument count (ignored) * @param argv commandline array of arguments (ignored) * calls automated test function to test the working of fast fourier transform. * @returns 0 on exit */ int main(int argc, char const *argv[]) { test(); // run self-test implementations return 0; }