/** * @file * @brief [Graph Dijkstras Shortest Path Algorithm * (Dijkstra's Shortest Path)] * (https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm) * * @author [Ayaan Khan](http://github.com/ayaankhan98) * * @details * Dijkstra's Algorithm is used to find the shortest path from a source * vertex to all other reachable vertex in the graph. * The algorithm initially assumes all the nodes are unreachable from the * given source vertex so we mark the distances of all vertices as INF * (infinity) from source vertex (INF / infinity denotes unable to reach). * * in similar fashion with BFS we assume the distance of source vertex as 0 * and pushes the vertex in a priority queue with it's distance. * we maintain the priority queue as a min heap so that we can get the * minimum element at the top of heap * * Basically what we do in this algorithm is that we try to minimize the * distances of all the reachable vertices from the current vertex, look * at the code below to understand in better way. * */ #include #include #include #include #include #include constexpr long long INF = std::numeric_limits::max(); /** * @namespace graph * @brief Graph Algorithms */ namespace graph { /** * @brief Function that add edge between two nodes or vertices of graph * * @param u any node or vertex of graph * @param v any node or vertex of graph */ void addEdge(std::vector>> *adj, int u, int v, int w) { (*adj)[u - 1].push_back(std::make_pair(v - 1, w)); // (*adj)[v - 1].push_back(std::make_pair(u - 1, w)); } /** * @brief Function runs the dijkstra algorithm for some source vertex and * target vertex in the graph and returns the shortest distance of target * from the source. * * @param adj input graph * @param s source vertex * @param t target vertex * * @return shortest distance if target is reachable from source else -1 in * case if target is not reachable from source. */ int dijkstra(std::vector>> *adj, int s, int t) { /// n denotes the number of vertices in graph int n = adj->size(); /// setting all the distances initially to INF std::vector dist(n, INF); /// creating a min heap using priority queue /// first element of pair contains the distance /// second element of pair contains the vertex std::priority_queue, std::vector>, std::greater>> pq; /// pushing the source vertex 's' with 0 distance in min heap pq.push(std::make_pair(0, s)); /// marking the distance of source as 0 dist[s] = 0; while (!pq.empty()) { /// second element of pair denotes the node / vertex int currentNode = pq.top().second; /// first element of pair denotes the distance int currentDist = pq.top().first; pq.pop(); /// for all the reachable vertex from the currently exploring vertex /// we will try to minimize the distance for (std::pair edge : (*adj)[currentNode]) { /// minimizing distances if (currentDist + edge.second < dist[edge.first]) { dist[edge.first] = currentDist + edge.second; pq.push(std::make_pair(dist[edge.first], edge.first)); } } } if (dist[t] != INF) { return dist[t]; } return -1; } } // namespace graph /** Function to test the Algorithm */ void tests() { std::cout << "Initiatinig Predefined Tests..." << std::endl; std::cout << "Initiating Test 1..." << std::endl; std::vector>> adj1( 4, std::vector>()); graph::addEdge(&adj1, 1, 2, 1); graph::addEdge(&adj1, 4, 1, 2); graph::addEdge(&adj1, 2, 3, 2); graph::addEdge(&adj1, 1, 3, 5); int s = 1, t = 3; assert(graph::dijkstra(&adj1, s - 1, t - 1) == 3); std::cout << "Test 1 Passed..." << std::endl; s = 4, t = 3; std::cout << "Initiating Test 2..." << std::endl; assert(graph::dijkstra(&adj1, s - 1, t - 1) == 5); std::cout << "Test 2 Passed..." << std::endl; std::vector>> adj2( 5, std::vector>()); graph::addEdge(&adj2, 1, 2, 4); graph::addEdge(&adj2, 1, 3, 2); graph::addEdge(&adj2, 2, 3, 2); graph::addEdge(&adj2, 3, 2, 1); graph::addEdge(&adj2, 2, 4, 2); graph::addEdge(&adj2, 3, 5, 4); graph::addEdge(&adj2, 5, 4, 1); graph::addEdge(&adj2, 2, 5, 3); graph::addEdge(&adj2, 3, 4, 4); s = 1, t = 5; std::cout << "Initiating Test 3..." << std::endl; assert(graph::dijkstra(&adj2, s - 1, t - 1) == 6); std::cout << "Test 3 Passed..." << std::endl; std::cout << "All Test Passed..." << std::endl << std::endl; } /** Main function */ int main() { // running predefined tests tests(); int vertices, edges; std::cout << "Enter the number of vertices : "; std::cin >> vertices; std::cout << "Enter the number of edges : "; std::cin >> edges; std::vector>> adj( vertices, std::vector>()); int u, v, w; while (edges--) { std::cin >> u >> v >> w; graph::addEdge(&adj, u, v, w); } int s, t; std::cin >> s >> t; int dist = graph::dijkstra(&adj, s - 1, t - 1); if (dist == -1) { std::cout << "Target not reachable from source" << std::endl; } else { std::cout << "Shortest Path Distance : " << dist << std::endl; } return 0; }