/** * @file * \brief Library functions to compute [QR * decomposition](https://en.wikipedia.org/wiki/QR_decomposition) of a given * matrix. * \author [Krishna Vedala](https://github.com/kvedala) */ #ifndef NUMERICAL_METHODS_QR_DECOMPOSE_H_ #define NUMERICAL_METHODS_QR_DECOMPOSE_H_ #include #include #include #include #include #include #include #ifdef _OPENMP #include #endif /** \namespace qr_algorithm * \brief Functions to compute [QR * decomposition](https://en.wikipedia.org/wiki/QR_decomposition) of any * rectangular matrix */ namespace qr_algorithm { /** * operator to print a matrix */ template std::ostream &operator<<(std::ostream &out, std::valarray> const &v) { const int width = 12; const char separator = ' '; out.precision(4); for (size_t row = 0; row < v.size(); row++) { for (size_t col = 0; col < v[row].size(); col++) out << std::right << std::setw(width) << std::setfill(separator) << v[row][col]; out << std::endl; } return out; } /** * operator to print a vector */ template std::ostream &operator<<(std::ostream &out, std::valarray const &v) { const int width = 10; const char separator = ' '; out.precision(4); for (size_t row = 0; row < v.size(); row++) { out << std::right << std::setw(width) << std::setfill(separator) << v[row]; } return out; } /** * Compute dot product of two vectors of equal lengths * * If \f$\vec{a}=\left[a_0,a_1,a_2,...,a_L\right]\f$ and * \f$\vec{b}=\left[b_0,b_1,b_1,...,b_L\right]\f$ then * \f$\vec{a}\cdot\vec{b}=\displaystyle\sum_{i=0}^L a_i\times b_i\f$ * * \returns \f$\vec{a}\cdot\vec{b}\f$ */ template inline double vector_dot(const std::valarray &a, const std::valarray &b) { return (a * b).sum(); // could also use following // return std::inner_product(std::begin(a), std::end(a), std::begin(b), // 0.f); } /** * Compute magnitude of vector. * * If \f$\vec{a}=\left[a_0,a_1,a_2,...,a_L\right]\f$ then * \f$\left|\vec{a}\right|=\sqrt{\displaystyle\sum_{i=0}^L a_i^2}\f$ * * \returns \f$\left|\vec{a}\right|\f$ */ template inline double vector_mag(const std::valarray &a) { double dot = vector_dot(a, a); return std::sqrt(dot); } /** * Compute projection of vector \f$\vec{a}\f$ on \f$\vec{b}\f$ defined as * \f[\text{proj}_\vec{b}\vec{a}=\frac{\vec{a}\cdot\vec{b}}{\left|\vec{b}\right|^2}\vec{b}\f] * * \returns NULL if error, otherwise pointer to output */ template std::valarray vector_proj(const std::valarray &a, const std::valarray &b) { double num = vector_dot(a, b); double deno = vector_dot(b, b); /*! check for division by zero using machine epsilon */ if (deno <= std::numeric_limits::epsilon()) { std::cerr << "[" << __func__ << "] Possible division by zero\n"; return a; // return vector a back } double scalar = num / deno; return b * scalar; } /** * Decompose matrix \f$A\f$ using [Gram-Schmidt *process](https://en.wikipedia.org/wiki/QR_decomposition). * * \f{eqnarray*}{ * \text{given that}\quad A &=& *\left[\mathbf{a}_1,\mathbf{a}_2,\ldots,\mathbf{a}_{N-1},\right]\\ * \text{where}\quad\mathbf{a}_i &=& * \left[a_{0i},a_{1i},a_{2i},\ldots,a_{(M-1)i}\right]^T\quad\ldots\mbox{(column * vectors)}\\ * \text{then}\quad\mathbf{u}_i &=& \mathbf{a}_i *-\sum_{j=0}^{i-1}\text{proj}_{\mathbf{u}_j}\mathbf{a}_i\\ * \mathbf{e}_i &=&\frac{\mathbf{u}_i}{\left|\mathbf{u}_i\right|}\\ * Q &=& \begin{bmatrix}\mathbf{e}_0 & \mathbf{e}_1 & \mathbf{e}_2 & \dots & * \mathbf{e}_{N-1}\end{bmatrix}\\ * R &=& \begin{bmatrix}\langle\mathbf{e}_0\,,\mathbf{a}_0\rangle & * \langle\mathbf{e}_1\,,\mathbf{a}_1\rangle & * \langle\mathbf{e}_2\,,\mathbf{a}_2\rangle & \dots \\ * 0 & \langle\mathbf{e}_1\,,\mathbf{a}_1\rangle & * \langle\mathbf{e}_2\,,\mathbf{a}_2\rangle & \dots\\ * 0 & 0 & \langle\mathbf{e}_2\,,\mathbf{a}_2\rangle & * \dots\\ \vdots & \vdots & \vdots & \ddots * \end{bmatrix}\\ * \f} */ template void qr_decompose( const std::valarray> &A, /**< input matrix to decompose */ std::valarray> *Q, /**< output decomposed matrix */ std::valarray> *R /**< output decomposed matrix */ ) { std::size_t ROWS = A.size(); // number of rows of A std::size_t COLUMNS = A[0].size(); // number of columns of A std::valarray col_vector(ROWS); std::valarray col_vector2(ROWS); std::valarray tmp_vector(ROWS); for (int i = 0; i < COLUMNS; i++) { /* for each column => R is a square matrix of NxN */ int j; R[0][i] = 0.; /* make R upper triangular */ /* get corresponding Q vector */ #ifdef _OPENMP // parallelize on threads #pragma omp for #endif for (j = 0; j < ROWS; j++) { tmp_vector[j] = A[j][i]; /* accumulator for uk */ col_vector[j] = A[j][i]; } for (j = 0; j < i; j++) { for (int k = 0; k < ROWS; k++) { col_vector2[k] = Q[0][k][j]; } col_vector2 = vector_proj(col_vector, col_vector2); tmp_vector -= col_vector2; } double mag = vector_mag(tmp_vector); #ifdef _OPENMP // parallelize on threads #pragma omp for #endif for (j = 0; j < ROWS; j++) Q[0][j][i] = tmp_vector[j] / mag; /* compute upper triangular values of R */ #ifdef _OPENMP // parallelize on threads #pragma omp for #endif for (int kk = 0; kk < ROWS; kk++) { col_vector[kk] = Q[0][kk][i]; } #ifdef _OPENMP // parallelize on threads #pragma omp for #endif for (int k = i; k < COLUMNS; k++) { for (int kk = 0; kk < ROWS; kk++) { col_vector2[kk] = A[kk][k]; } R[0][i][k] = (col_vector * col_vector2).sum(); } } } } // namespace qr_algorithm #endif // NUMERICAL_METHODS_QR_DECOMPOSE_H_