/** * \file * \brief Find extrema of a univariate real function in a given interval using * [golden section search * algorithm](https://en.wikipedia.org/wiki/Golden-section_search). * * \author [Krishna Vedala](https://github.com/kvedala) */ #define _USE_MATH_DEFINES //< required for MS Visual C++ #include #include #include #include #include #define EPSILON 1e-7 ///< solution accuracy limit /** * @brief Get the minima of a function in the given interval. To get the maxima, * simply negate the function. The golden ratio used here is:\f[ * k=\frac{3-\sqrt{5}}{2} \approx 0.381966\ldots\f] * * @param f function to get minima for * @param lim_a lower limit of search window * @param lim_b upper limit of search window * @return local minima found in the interval */ double get_minima(const std::function &f, double lim_a, double lim_b) { uint32_t iters = 0; double c, d; double prev_mean, mean = std::numeric_limits::infinity(); // golden ratio value const double M_GOLDEN_RATIO = (1.f + std::sqrt(5.f)) / 2.f; // ensure that lim_a < lim_b if (lim_a > lim_b) { std::swap(lim_a, lim_b); } else if (std::abs(lim_a - lim_b) <= EPSILON) { std::cerr << "Search range must be greater than " << EPSILON << "\n"; return lim_a; } do { prev_mean = mean; // compute the section ratio width double ratio = (lim_b - lim_a) / M_GOLDEN_RATIO; c = lim_b - ratio; // right-side section start d = lim_a + ratio; // left-side section end if (f(c) < f(d)) { // select left section lim_b = d; } else { // selct right section lim_a = c; } mean = (lim_a + lim_b) / 2.f; iters++; // continue till the interval width is greater than sqrt(system epsilon) } while (std::abs(lim_a - lim_b) > EPSILON); std::cout << " (iters: " << iters << ") "; return prev_mean; } /** * @brief Test function to find minima for the function * \f$f(x)= (x-2)^2\f$ * in the interval \f$[1,5]\f$ * \n Expected result = 2 */ void test1() { // define the function to minimize as a lambda function std::function f1 = [](double x) { return (x - 2) * (x - 2); }; std::cout << "Test 1.... "; double minima = get_minima(f1, 1, 5); std::cout << minima << "..."; assert(std::abs(minima - 2) < EPSILON); std::cout << "passed\n"; } /** * @brief Test function to find *maxima* for the function * \f$f(x)= x^{\frac{1}{x}}\f$ * in the interval \f$[-2,10]\f$ * \n Expected result: \f$e\approx 2.71828182845904509\f$ */ void test2() { // define the function to maximize as a lambda function // since we are maximixing, we negated the function return value std::function func = [](double x) { return -std::pow(x, 1.f / x); }; std::cout << "Test 2.... "; double minima = get_minima(func, -2, 10); std::cout << minima << " (" << M_E << ")..."; assert(std::abs(minima - M_E) < EPSILON); std::cout << "passed\n"; } /** * @brief Test function to find *maxima* for the function * \f$f(x)= \cos x\f$ * in the interval \f$[0,12]\f$ * \n Expected result: \f$\pi\approx 3.14159265358979312\f$ */ void test3() { // define the function to maximize as a lambda function // since we are maximixing, we negated the function return value std::function func = [](double x) { return std::cos(x); }; std::cout << "Test 3.... "; double minima = get_minima(func, -4, 12); std::cout << minima << " (" << M_PI << ")..."; assert(std::abs(minima - M_PI) < EPSILON); std::cout << "passed\n"; } /** Main function */ int main() { std::cout.precision(9); std::cout << "Computations performed with machine epsilon: " << EPSILON << "\n"; test1(); test2(); test3(); return 0; }