/** * @file * @brief Implementation of the [Subset * Sum](https://en.wikipedia.org/wiki/Subset_sum_problem) problem. * @details * We are given an array and a sum value. The algorithm finds all * the subsets of that array with sum equal to the given sum and return such * subsets count. This approach will have exponential time complexity. * @author [Swastika Gupta](https://github.com/Swastyy) */ #include /// for assert #include /// for IO operations #include /// for std::vector /** * @namespace backtracking * @brief Backtracking algorithms */ namespace backtracking { /** * @namespace Subsets * @brief Functions for the [Subset * Sum](https://en.wikipedia.org/wiki/Subset_sum_problem) problem. */ namespace subset_sum { /** * @brief The main function implements count of subsets * @param sum is the required sum of any subset * @param in_arr is the input array * @returns count of the number of subsets with required sum */ uint64_t number_of_subsets(int32_t sum, const std::vector &in_arr) { int32_t nelement = in_arr.size(); uint64_t count_of_subset = 0; for (int32_t i = 0; i < (1 << (nelement)); i++) { int32_t check = 0; for (int32_t j = 0; j < nelement; j++) { if (i & (1 << j)) { check += (in_arr[j]); } } if (check == sum) { count_of_subset++; } } return count_of_subset; } } // namespace subset_sum } // namespace backtracking /** * @brief Test implementations * @returns void */ static void test() { // 1st test std::cout << "1st test "; std::vector array1 = {-7, -3, -2, 5, 8}; // input array assert(backtracking::subset_sum::number_of_subsets(0, array1) == 2); // first argument in subset_sum function is the required sum and // second is the input array std::cout << "passed" << std::endl; // 2nd test std::cout << "2nd test "; std::vector array2 = {1, 2, 3, 3}; assert(backtracking::subset_sum::number_of_subsets(6, array2) == 3); // here we are expecting 3 subsets which sum up to 6 i.e. // {(1,2,3),(1,2,3),(3,3)} std::cout << "passed" << std::endl; // 3rd test std::cout << "3rd test "; std::vector array3 = {1, 1, 1, 1}; assert(backtracking::subset_sum::number_of_subsets(1, array3) == 4); // here we are expecting 4 subsets which sum up to 1 i.e. // {(1),(1),(1),(1)} std::cout << "passed" << std::endl; // 4th test std::cout << "4th test "; std::vector array4 = {3, 3, 3, 3}; assert(backtracking::subset_sum::number_of_subsets(6, array4) == 6); // here we are expecting 6 subsets which sum up to 6 i.e. // {(3,3),(3,3),(3,3),(3,3),(3,3),(3,3)} std::cout << "passed" << std::endl; // Test 5 std::cout << "5th test "; std::vector array5 = {}; assert(backtracking::subset_sum::number_of_subsets(6, array5) == 0); // here we are expecting 0 subsets which sum up to 6 i.e. we // cannot select anything from an empty array std::cout << "passed" << std::endl; } /** * @brief Main function * @returns 0 on exit */ int main() { test(); // run self-test implementations return 0; }