/** * \file * \authors [Krishna Vedala](https://github.com/kvedala) * \brief Solve a multivariable first order [ordinary differential equation * (ODEs)](https://en.wikipedia.org/wiki/Ordinary_differential_equation) using * [forward Euler * method](https://en.wikipedia.org/wiki/Numerical_methods_for_ordinary_differential_equations#Euler_method) * * \details * The ODE being solved is: * \f{eqnarray*}{ * \dot{u} &=& v\\ * \dot{v} &=& -\omega^2 u\\ * \omega &=& 1\\ * [x_0, u_0, v_0] &=& [0,1,0]\qquad\ldots\text{(initial values)} * \f} * The exact solution for the above problem is: * \f{eqnarray*}{ * u(x) &=& \cos(x)\\ * v(x) &=& -\sin(x)\\ * \f} * The computation results are stored to a text file `forward_euler.csv` and the * exact soltuion results in `exact.csv` for comparison. * Implementation solution * * To implement [Van der Pol * oscillator](https://en.wikipedia.org/wiki/Van_der_Pol_oscillator), change the * ::problem function to: * ```cpp * const double mu = 2.0; * dy[0] = y[1]; * dy[1] = mu * (1.f - y[0] * y[0]) * y[1] - y[0]; * ``` * \see ode_midpoint_euler.cpp, ode_semi_implicit_euler.cpp */ #include #include #include #include #include /** * @brief Problem statement for a system with first-order differential * equations. Updates the system differential variables. * \note This function can be updated to and ode of any order. * * @param[in] x independent variable(s) * @param[in,out] y dependent variable(s) * @param[in,out] dy first-derivative of dependent variable(s) */ void problem(const double &x, std::valarray *y, std::valarray *dy) { const double omega = 1.F; // some const for the problem (*dy)[0] = (*y)[1]; // x dot // NOLINT (*dy)[1] = -omega * omega * (*y)[0]; // y dot // NOLINT } /** * @brief Exact solution of the problem. Used for solution comparison. * * @param[in] x independent variable * @param[in,out] y dependent variable */ void exact_solution(const double &x, std::valarray *y) { y[0][0] = std::cos(x); y[0][1] = -std::sin(x); } /** \addtogroup ode Ordinary Differential Equations * Integration functions for implementations with solving [ordinary differential * equations](https://en.wikipedia.org/wiki/Ordinary_differential_equation) * (ODEs) of any order and and any number of independent variables. * @{ */ /** * @brief Compute next step approximation using the forward-Euler * method. @f[y_{n+1}=y_n + dx\cdot f\left(x_n,y_n\right)@f] * @param[in] dx step size * @param[in] x take \f$x_n\f$ and compute \f$x_{n+1}\f$ * @param[in,out] y take \f$y_n\f$ and compute \f$y_{n+1}\f$ * @param[in,out] dy compute \f$f\left(x_n,y_n\right)\f$ */ void forward_euler_step(const double dx, const double x, std::valarray *y, std::valarray *dy) { problem(x, y, dy); *y += *dy * dx; } /** * @brief Compute approximation using the forward-Euler * method in the given limits. * @param[in] dx step size * @param[in] x0 initial value of independent variable * @param[in] x_max final value of independent variable * @param[in,out] y take \f$y_n\f$ and compute \f$y_{n+1}\f$ * @param[in] save_to_file flag to save results to a CSV file (1) or not (0) * @returns time taken for computation in seconds */ double forward_euler(double dx, double x0, double x_max, std::valarray *y, bool save_to_file = false) { std::valarray dy = *y; std::ofstream fp; if (save_to_file) { fp.open("forward_euler.csv", std::ofstream::out); if (!fp.is_open()) { std::perror("Error! "); } } std::size_t L = y->size(); /* start integration */ std::clock_t t1 = std::clock(); double x = x0; do { // iterate for each step of independent variable if (save_to_file && fp.is_open()) { // write to file fp << x << ","; for (int i = 0; i < L - 1; i++) { fp << y[0][i] << ","; // NOLINT } fp << y[0][L - 1] << "\n"; // NOLINT } forward_euler_step(dx, x, y, &dy); // perform integration x += dx; // update step } while (x <= x_max); // till upper limit of independent variable /* end of integration */ std::clock_t t2 = std::clock(); if (fp.is_open()) { fp.close(); } return static_cast(t2 - t1) / CLOCKS_PER_SEC; } /** @} */ /** * Function to compute and save exact solution for comparison * * \param [in] X0 initial value of independent variable * \param [in] X_MAX final value of independent variable * \param [in] step_size independent variable step size * \param [in] Y0 initial values of dependent variables */ void save_exact_solution(const double &X0, const double &X_MAX, const double &step_size, const std::valarray &Y0) { double x = X0; std::valarray y(Y0); std::ofstream fp("exact.csv", std::ostream::out); if (!fp.is_open()) { std::perror("Error! "); return; } std::cout << "Finding exact solution\n"; std::clock_t t1 = std::clock(); do { fp << x << ","; for (int i = 0; i < y.size() - 1; i++) { fp << y[i] << ","; // NOLINT } fp << y[y.size() - 1] << "\n"; // NOLINT exact_solution(x, &y); x += step_size; } while (x <= X_MAX); std::clock_t t2 = std::clock(); double total_time = static_cast(t2 - t1) / CLOCKS_PER_SEC; std::cout << "\tTime = " << total_time << " ms\n"; fp.close(); } /** * Main Function */ int main(int argc, char *argv[]) { double X0 = 0.f; /* initial value of x0 */ double X_MAX = 10.F; /* upper limit of integration */ std::valarray Y0{1.f, 0.f}; /* initial value Y = y(x = x_0) */ double step_size = NAN; if (argc == 1) { std::cout << "\nEnter the step size: "; std::cin >> step_size; } else { // use commandline argument as independent variable step size step_size = std::atof(argv[1]); } // get approximate solution double total_time = forward_euler(step_size, X0, X_MAX, &Y0, true); std::cout << "\tTime = " << total_time << " ms\n"; /* compute exact solution for comparion */ save_exact_solution(X0, X_MAX, step_size, Y0); return 0; }