/** * @file * * @brief Algorithm to check whether a graph is * [bipartite](https://en.wikipedia.org/wiki/Bipartite_graph) * * @details * A graph is a collection of nodes also called vertices and these vertices * are connected by edges. A graph is bipartite if its vertices can be * divided into two disjoint and independent sets U and V such that every edge * connects a vertex in U to one in V. * * The algorithm implemented in this file determines whether the given graph * is bipartite or not. * *
 *  Example - Here is a graph g1 with 5 vertices and is bipartite
 *
 *     1   4
 *    / \ / \
 *   2   3   5
 *
 * Example - Here is a graph G2 with 3 vertices and is not bipartite
 *
 *   1 --- 2
 *    \   /
 *      3
 *
 * 
* * @author [Akshat Vaya](https://github.com/AkVaya) * */ #include #include #include /** * @namespace graph * @brief Graph algorithms */ namespace graph { /** * @namespace is_graph_bipartite * @brief Functions for checking whether a graph is bipartite or not */ namespace is_graph_bipartite { /** * @brief Class for representing graph as an adjacency list. */ class Graph { private: int n; ///< size of the graph std::vector > adj; ///< adj stores the graph as an adjacency list std::vector side; ///< stores the side of the vertex public: /** * @brief Constructor that initializes the graph on creation * @param size number of vertices of the graph */ explicit Graph(int size) { n = size; adj.resize(n); side.resize(n, -1); } void addEdge(int u, int v); /// function to add edges to our graph bool is_bipartite(); /// function to check whether the graph is bipartite or not }; /** * @brief Function that add an edge between two nodes or vertices of graph * * @param u is a node or vertex of graph * @param v is a node or vertex of graph */ void Graph::addEdge(int u, int v) { adj[u - 1].push_back(v - 1); adj[v - 1].push_back(u - 1); } /** * @brief function that checks whether the graph is bipartite or not * the function returns true if the graph is a bipartite graph * the function returns false if the graph is not a bipartite graph * * @details * Here, side refers to the two disjoint subsets of the bipartite graph. * Initially, the values of side are set to -1 which is an unassigned state. A * for loop is run for every vertex of the graph. If the current edge has no * side assigned to it, then a Breadth First Search operation is performed. If * two neighbours have the same side then the graph will not be bipartite and * the value of check becomes false. If and only if each pair of neighbours have * different sides, the value of check will be true and hence the graph * bipartite. * * @returns `true` if th graph is bipartite * @returns `false` otherwise */ bool Graph::is_bipartite() { bool check = true; std::queue q; for (int current_edge = 0; current_edge < n; ++current_edge) { if (side[current_edge] == -1) { q.push(current_edge); side[current_edge] = 0; while (q.size()) { int current = q.front(); q.pop(); for (auto neighbour : adj[current]) { if (side[neighbour] == -1) { side[neighbour] = (1 ^ side[current]); q.push(neighbour); } else { check &= (side[neighbour] != side[current]); } } } } } return check; } } // namespace is_graph_bipartite } // namespace graph /** * Function to test the above algorithm * @returns none */ static void test() { graph::is_graph_bipartite::Graph G1( 5); /// creating graph G1 with 5 vertices /// adding edges to the graphs as per the illustrated example G1.addEdge(1, 2); G1.addEdge(1, 3); G1.addEdge(3, 4); G1.addEdge(4, 5); graph::is_graph_bipartite::Graph G2( 3); /// creating graph G2 with 3 vertices /// adding edges to the graphs as per the illustrated example G2.addEdge(1, 2); G2.addEdge(1, 3); G2.addEdge(2, 3); /// checking whether the graphs are bipartite or not if (G1.is_bipartite()) { std::cout << "The given graph G1 is a bipartite graph\n"; } else { std::cout << "The given graph G1 is not a bipartite graph\n"; } if (G2.is_bipartite()) { std::cout << "The given graph G2 is a bipartite graph\n"; } else { std::cout << "The given graph G2 is not a bipartite graph\n"; } } /** * Main function */ int main() { test(); /// Testing return 0; }