/** * @{ * \file * \brief [Runge Kutta fourth * order](https://en.wikipedia.org/wiki/Runge%E2%80%93Kutta_methods) method * implementation * * \author [Rudra Prasad Das](http://github.com/rudra697) * * \details * It solves the unknown value of y * for a given value of x * only first order differential equations * can be solved * \example * it solves \frac{\mathrm{d} y}{\mathrm{d} x}= \frac{\left ( x-y \right )}{2} * given x for given initial * conditions * There can be many such equations */ #include /// asserting the test functions #include /// for io operations #include /// for using the vector container /** * @brief The change() function is used * to return the updated iterative value corresponding * to the given function * @param x is the value corresponding to the x coordinate * @param y is the value corresponding to the y coordinate * @returns the computed function value at that call */ static double change(double x, double y) { return ((x - y) / 2.0); } /** * @namespace numerical_methods * @brief Numerical Methods */ namespace numerical_methods { /** * @namespace runge_kutta * @brief Functions for [Runge Kutta fourth * order](https://en.wikipedia.org/wiki/Runge%E2%80%93Kutta_methods) method */ namespace runge_kutta { /** * @brief the Runge Kutta method finds the value of integration of a function in * the given limits. the lower limit of integration as the initial value and the * upper limit is the given x * @param init_x is the value of initial x and is updated after each call * @param init_y is the value of initial x and is updated after each call * @param x is current iteration at which the function needs to be evaluated * @param h is the step value * @returns the value of y at thr required value of x from the initial * conditions */ double rungeKutta(double init_x, const double &init_y, const double &x, const double &h) { // Count number of iterations // using step size or // step height h // n calucates the number of iterations // k1, k2, k3, k4 are the Runge Kutta variables // used for calculation of y at each iteration auto n = static_cast((x - init_x) / h); // used a vector container for the variables std::vector k(4, 0.0); // Iterate for number of iterations double y = init_y; for (int i = 1; i <= n; ++i) { // Apply Runge Kutta Formulas // to find next value of y k[0] = h * change(init_x, y); k[1] = h * change(init_x + 0.5 * h, y + 0.5 * k[0]); k[2] = h * change(init_x + 0.5 * h, y + 0.5 * k[1]); k[3] = h * change(init_x + h, y + k[2]); // Update next value of y y += (1.0 / 6.0) * (k[0] + 2 * k[1] + 2 * k[2] + k[3]); // Update next value of x init_x += h; } return y; } } // namespace runge_kutta } // namespace numerical_methods /** * @brief Tests to check algorithm implementation. * @returns void */ static void test() { std::cout << "The Runge Kutta function will be tested on the basis of " "precomputed values\n"; std::cout << "Test 1...." << "\n"; double valfirst = numerical_methods::runge_kutta::rungeKutta( 2, 3, 4, 0.2); // Tests the function with pre calculated values assert(valfirst == 3.10363932323749570); std::cout << "Passed Test 1\n"; std::cout << "Test 2...." << "\n"; double valsec = numerical_methods::runge_kutta::rungeKutta( 1, 2, 5, 0.1); // The value of step changed assert(valsec == 3.40600589380261409); std::cout << "Passed Test 2\n"; std::cout << "Test 3...." << "\n"; double valthird = numerical_methods::runge_kutta::rungeKutta( -1, 3, 4, 0.1); // Tested with negative value assert(valthird == 2.49251005860244268); std::cout << "Passed Test 3\n"; } /** * @brief Main function * @returns 0 on exit */ int main() { test(); // Execute the tests return 0; }