/** * @file * @brief [Bidirectional Dijkstra Shortest Path Algorithm] * (https://www.coursera.org/learn/algorithms-on-graphs/lecture/7ml18/bidirectional-dijkstra) * * @author [Marinovksy](http://github.com/Marinovsky) * * @details * This is basically the same Dijkstra Algorithm but faster because it goes from * the source to the target and from target to the source and stops when * finding a vertex visited already by the direct search or the reverse one. * Here some simulations of it: * https://www.youtube.com/watch?v=DINCL5cd_w0&t=24s */ #include /// for assert #include /// for io operations #include /// for variable INF #include /// for the priority_queue of distances #include /// for make_pair function #include /// for store the graph, the distances, and the path constexpr int64_t INF = std::numeric_limits::max(); /** * @namespace graph * @brief Graph Algorithms */ namespace graph { /** * @namespace bidirectional_dijkstra * @brief Functions for [Bidirectional Dijkstra Shortest Path] * (https://www.coursera.org/learn/algorithms-on-graphs/lecture/7ml18/bidirectional-dijkstra) * algorithm */ namespace bidirectional_dijkstra { /** * @brief Function that add edge between two nodes or vertices of graph * * @param adj1 adjacency list for the direct search * @param adj2 adjacency list for the reverse search * @param u any node or vertex of graph * @param v any node or vertex of graph */ void addEdge(std::vector>> *adj1, std::vector>> *adj2, uint64_t u, uint64_t v, uint64_t w) { (*adj1)[u - 1].push_back(std::make_pair(v - 1, w)); (*adj2)[v - 1].push_back(std::make_pair(u - 1, w)); // (*adj)[v - 1].push_back(std::make_pair(u - 1, w)); } /** * @brief This function returns the shortest distance from the source * to the target if there is path between vertices 's' and 't'. * * @param workset_ vertices visited in the search * @param distance_ vector of distances from the source to the target and * from the target to the source * */ uint64_t Shortest_Path_Distance( const std::vector &workset_, const std::vector> &distance_) { int64_t distance = INF; for (uint64_t i : workset_) { if (distance_[0][i] + distance_[1][i] < distance) { distance = distance_[0][i] + distance_[1][i]; } } return distance; } /** * @brief Function runs the dijkstra algorithm for some source vertex and * target vertex in the graph and returns the shortest distance of target * from the source. * * @param adj1 input graph * @param adj2 input graph reversed * @param s source vertex * @param t target vertex * * @return shortest distance if target is reachable from source else -1 in * case if target is not reachable from source. */ int Bidijkstra(std::vector>> *adj1, std::vector>> *adj2, uint64_t s, uint64_t t) { /// n denotes the number of vertices in graph uint64_t n = adj1->size(); /// setting all the distances initially to INF std::vector> dist(2, std::vector(n, INF)); /// creating a a vector of min heap using priority queue /// pq[0] contains the min heap for the direct search /// pq[1] contains the min heap for the reverse search /// first element of pair contains the distance /// second element of pair contains the vertex std::vector< std::priority_queue, std::vector>, std::greater>>> pq(2); /// vector for store the nodes or vertices in the shortest path std::vector workset(n); /// vector for store the nodes or vertices visited std::vector visited(n); /// pushing the source vertex 's' with 0 distance in pq[0] min heap pq[0].push(std::make_pair(0, s)); /// marking the distance of source as 0 dist[0][s] = 0; /// pushing the target vertex 't' with 0 distance in pq[1] min heap pq[1].push(std::make_pair(0, t)); /// marking the distance of target as 0 dist[1][t] = 0; while (true) { /// direct search // If pq[0].size() is equal to zero then the node/ vertex is not // reachable from s if (pq[0].size() == 0) { break; } /// second element of pair denotes the node / vertex uint64_t currentNode = pq[0].top().second; /// first element of pair denotes the distance uint64_t currentDist = pq[0].top().first; pq[0].pop(); /// for all the reachable vertex from the currently exploring vertex /// we will try to minimize the distance for (std::pair edge : (*adj1)[currentNode]) { /// minimizing distances if (currentDist + edge.second < dist[0][edge.first]) { dist[0][edge.first] = currentDist + edge.second; pq[0].push(std::make_pair(dist[0][edge.first], edge.first)); } } // store the processed node/ vertex workset.push_back(currentNode); /// check if currentNode has already been visited if (visited[currentNode] == 1) { return Shortest_Path_Distance(workset, dist); } visited[currentNode] = true; /// reversed search // If pq[1].size() is equal to zero then the node/ vertex is not // reachable from t if (pq[1].size() == 0) { break; } /// second element of pair denotes the node / vertex currentNode = pq[1].top().second; /// first element of pair denotes the distance currentDist = pq[1].top().first; pq[1].pop(); /// for all the reachable vertex from the currently exploring vertex /// we will try to minimize the distance for (std::pair edge : (*adj2)[currentNode]) { /// minimizing distances if (currentDist + edge.second < dist[1][edge.first]) { dist[1][edge.first] = currentDist + edge.second; pq[1].push(std::make_pair(dist[1][edge.first], edge.first)); } } // store the processed node/ vertex workset.push_back(currentNode); /// check if currentNode has already been visited if (visited[currentNode] == 1) { return Shortest_Path_Distance(workset, dist); } visited[currentNode] = true; } return -1; } } // namespace bidirectional_dijkstra } // namespace graph /** * @brief Function to test the * provided algorithm above * @returns void */ static void tests() { std::cout << "Initiatinig Predefined Tests..." << std::endl; std::cout << "Initiating Test 1..." << std::endl; std::vector>> adj1_1( 4, std::vector>()); std::vector>> adj1_2( 4, std::vector>()); graph::bidirectional_dijkstra::addEdge(&adj1_1, &adj1_2, 1, 2, 1); graph::bidirectional_dijkstra::addEdge(&adj1_1, &adj1_2, 4, 1, 2); graph::bidirectional_dijkstra::addEdge(&adj1_1, &adj1_2, 2, 3, 2); graph::bidirectional_dijkstra::addEdge(&adj1_1, &adj1_2, 1, 3, 5); uint64_t s = 1, t = 3; assert(graph::bidirectional_dijkstra::Bidijkstra(&adj1_1, &adj1_2, s - 1, t - 1) == 3); std::cout << "Test 1 Passed..." << std::endl; s = 4, t = 3; std::cout << "Initiating Test 2..." << std::endl; assert(graph::bidirectional_dijkstra::Bidijkstra(&adj1_1, &adj1_2, s - 1, t - 1) == 5); std::cout << "Test 2 Passed..." << std::endl; std::vector>> adj2_1( 5, std::vector>()); std::vector>> adj2_2( 5, std::vector>()); graph::bidirectional_dijkstra::addEdge(&adj2_1, &adj2_2, 1, 2, 4); graph::bidirectional_dijkstra::addEdge(&adj2_1, &adj2_2, 1, 3, 2); graph::bidirectional_dijkstra::addEdge(&adj2_1, &adj2_2, 2, 3, 2); graph::bidirectional_dijkstra::addEdge(&adj2_1, &adj2_2, 3, 2, 1); graph::bidirectional_dijkstra::addEdge(&adj2_1, &adj2_2, 2, 4, 2); graph::bidirectional_dijkstra::addEdge(&adj2_1, &adj2_2, 3, 5, 4); graph::bidirectional_dijkstra::addEdge(&adj2_1, &adj2_2, 5, 4, 1); graph::bidirectional_dijkstra::addEdge(&adj2_1, &adj2_2, 2, 5, 3); graph::bidirectional_dijkstra::addEdge(&adj2_1, &adj2_2, 3, 4, 4); s = 1, t = 5; std::cout << "Initiating Test 3..." << std::endl; assert(graph::bidirectional_dijkstra::Bidijkstra(&adj2_1, &adj2_2, s - 1, t - 1) == 6); std::cout << "Test 3 Passed..." << std::endl; std::cout << "All Test Passed..." << std::endl << std::endl; } /** * @brief Main function * @returns 0 on exit */ int main() { tests(); // running predefined tests uint64_t vertices = uint64_t(); uint64_t edges = uint64_t(); std::cout << "Enter the number of vertices : "; std::cin >> vertices; std::cout << "Enter the number of edges : "; std::cin >> edges; std::vector>> adj1( vertices, std::vector>()); std::vector>> adj2( vertices, std::vector>()); uint64_t u = uint64_t(), v = uint64_t(), w = uint64_t(); std::cout << "Enter the edges by three integers in this form: u v w " << std::endl; std::cout << "Example: if there is and edge between node 1 and node 4 with " "weight 7 enter: 1 4 7, and then press enter" << std::endl; while (edges--) { std::cin >> u >> v >> w; graph::bidirectional_dijkstra::addEdge(&adj1, &adj2, u, v, w); if (edges != 0) { std::cout << "Enter the next edge" << std::endl; } } uint64_t s = uint64_t(), t = uint64_t(); std::cout << "Enter the source node and the target node separated by a space" << std::endl; std::cout << "Example: If the source node is 5 and the target node is 6 " "enter: 5 6 and press enter" << std::endl; std::cin >> s >> t; int dist = graph::bidirectional_dijkstra::Bidijkstra(&adj1, &adj2, s - 1, t - 1); if (dist == -1) { std::cout << "Target not reachable from source" << std::endl; } else { std::cout << "Shortest Path Distance : " << dist << std::endl; } return 0; }