TheAlgorithms-C-Plus-Plus/probability/geometric_dist.cpp
Anuran Roy 85721be69b
feat: Modify search/text_search.cpp (#1662)
* Modified search/text_search.cpp

* Added tests

* Added a few test cases

* Added a few more test cases and documentation

* Minor fix

* Minor fixes

* Minor fixes

* Minor output fixes

* Minor output fixes

* Minor readability fixes

* clang-format and clang-tidy fixes for a01765a6

* Restored original settings

* clang-format and clang-tidy fixes for 6a8f3a4e

Co-authored-by: github-actions <${GITHUB_ACTOR}@users.noreply.github.com>
Co-authored-by: David Leal <halfpacho@gmail.com>
2021-10-14 13:34:55 -05:00

261 lines
9.5 KiB
C++
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/**
* @file
* @brief [Geometric
* Distribution](https://en.wikipedia.org/wiki/Geometric_distribution)
*
* @details
* The geometric distribution models the experiment of doing Bernoulli trials
* until a sucess was observed. There are two formulations of the geometric
* distribution: 1) The probability distribution of the number X of Bernoulli
* trials needed to get one success, supported on the set { 1, 2, 3, ... } 2)
* The probability distribution of the number Y = X 1 of failures before the
* first success, supported on the set { 0, 1, 2, 3, ... } Here, the first one
* is implemented.
*
* Common variables used:
* p - The success probability
* k - The number of tries
*
* @author [Domenic Zingsheim](https://github.com/DerAndereDomenic)
*/
#include <cassert> /// for assert
#include <cmath> /// for math functions
#include <cstdint> /// for fixed size data types
#include <ctime> /// for time to initialize rng
#include <iostream> /// for std::cout
#include <limits> /// for std::numeric_limits
#include <random> /// for random numbers
#include <vector> /// for std::vector
/**
* @namespace probability
* @brief Probability algorithms
*/
namespace probability {
/**
* @namespace geometric_dist
* @brief Functions for the [Geometric
* Distribution](https://en.wikipedia.org/wiki/Geometric_distribution) algorithm
* implementation
*/
namespace geometric_dist {
/**
* @brief Returns a random number between [0,1]
* @returns A uniformly distributed random number between 0 (included) and 1
* (included)
*/
float generate_uniform() {
return static_cast<float>(rand()) / static_cast<float>(RAND_MAX);
}
/**
* @brief A class to model the geometric distribution
*/
class geometric_distribution {
private:
float p; ///< The succes probability p
public:
/**
* @brief Constructor for the geometric distribution
* @param p The success probability
*/
explicit geometric_distribution(const float& p) : p(p) {}
/**
* @brief The expected value of a geometrically distributed random variable
* X
* @returns E[X] = 1/p
*/
float expected_value() const { return 1.0f / p; }
/**
* @brief The variance of a geometrically distributed random variable X
* @returns V[X] = (1 - p) / p^2
*/
float variance() const { return (1.0f - p) / (p * p); }
/**
* @brief The standard deviation of a geometrically distributed random
* variable X
* @returns \sigma = \sqrt{V[X]}
*/
float standard_deviation() const { return std::sqrt(variance()); }
/**
* @brief The probability density function
* @details As we use the first definition of the geometric series (1),
* we are doing k - 1 failed trials and the k-th trial is a success.
* @param k The number of trials to observe the first success in [1,\infty)
* @returns A number between [0,1] according to p * (1-p)^{k-1}
*/
float probability_density(const uint32_t& k) const {
return std::pow((1.0f - p), static_cast<float>(k - 1)) * p;
}
/**
* @brief The cumulative distribution function
* @details The sum of all probabilities up to (and including) k trials.
* Basically CDF(k) = P(x <= k)
* @param k The number of trials in [1,\infty)
* @returns The probability to have success within k trials
*/
float cumulative_distribution(const uint32_t& k) const {
return 1.0f - std::pow((1.0f - p), static_cast<float>(k));
}
/**
* @brief The inverse cumulative distribution function
* @details This functions answers the question: Up to how many trials are
* needed to have success with a probability of cdf? The exact floating
* point value is reported.
* @param cdf The probability in [0,1]
* @returns The number of (exact) trials.
*/
float inverse_cumulative_distribution(const float& cdf) const {
return std::log(1.0f - cdf) / std::log(1.0f - p);
}
/**
* @brief Generates a (discrete) sample according to the geometrical
* distribution
* @returns A geometrically distributed number in [1,\infty)
*/
uint32_t draw_sample() const {
float uniform_sample = generate_uniform();
return static_cast<uint32_t>(
inverse_cumulative_distribution(uniform_sample)) +
1;
}
/**
* @brief This function computes the probability to have success in a given
* range of tries
* @details Computes P(min_tries <= x <= max_tries).
* Can be used to calculate P(x >= min_tries) by not passing a second
* argument. Can be used to calculate P(x <= max_tries) by passing 1 as the
* first argument
* @param min_tries The minimum number of tries in [1,\infty) (inclusive)
* @param max_tries The maximum number of tries in [min_tries, \infty)
* (inclusive)
* @returns The probability of having success within a range of tries
* [min_tries, max_tries]
*/
float range_tries(const uint32_t& min_tries = 1,
const uint32_t& max_tries =
std::numeric_limits<uint32_t>::max()) const {
float cdf_lower = cumulative_distribution(min_tries - 1);
float cdf_upper = max_tries == std::numeric_limits<uint32_t>::max()
? 1.0f
: cumulative_distribution(max_tries);
return cdf_upper - cdf_lower;
}
};
} // namespace geometric_dist
} // namespace probability
/**
* @brief Tests the sampling method of the geometric distribution
* @details Draws 1000000 random samples and estimates mean and variance
* These should be close to the expected value and variance of the given
* distribution to pass.
* @param dist The distribution to test
*/
void sample_test(
const probability::geometric_dist::geometric_distribution& dist) {
uint32_t n_tries = 1000000;
std::vector<float> tries;
tries.resize(n_tries);
float mean = 0.0f;
for (uint32_t i = 0; i < n_tries; ++i) {
tries[i] = static_cast<float>(dist.draw_sample());
mean += tries[i];
}
mean /= static_cast<float>(n_tries);
float var = 0.0f;
for (uint32_t i = 0; i < n_tries; ++i) {
var += (tries[i] - mean) * (tries[i] - mean);
}
// Unbiased estimate of variance
var /= static_cast<float>(n_tries - 1);
std::cout << "This value should be near " << dist.expected_value() << ": "
<< mean << std::endl;
std::cout << "This value should be near " << dist.variance() << ": " << var
<< std::endl;
}
/**
* @brief Self-test implementations
* @returns void
*/
static void test() {
probability::geometric_dist::geometric_distribution dist(0.3);
const float threshold = 1e-3f;
std::cout << "Starting tests for p = 0.3..." << std::endl;
assert(std::abs(dist.expected_value() - 3.33333333f) < threshold);
assert(std::abs(dist.variance() - 7.77777777f) < threshold);
assert(std::abs(dist.standard_deviation() - 2.788866755) < threshold);
assert(std::abs(dist.probability_density(5) - 0.07203) < threshold);
assert(std::abs(dist.cumulative_distribution(6) - 0.882351) < threshold);
assert(std::abs(dist.inverse_cumulative_distribution(
dist.cumulative_distribution(8)) -
8) < threshold);
assert(std::abs(dist.range_tries() - 1.0f) < threshold);
assert(std::abs(dist.range_tries(3) - 0.49f) < threshold);
assert(std::abs(dist.range_tries(5, 11) - 0.2203267f) < threshold);
std::cout << "All tests passed" << std::endl;
sample_test(dist);
dist = probability::geometric_dist::geometric_distribution(0.5f);
std::cout << "Starting tests for p = 0.5..." << std::endl;
assert(std::abs(dist.expected_value() - 2.0f) < threshold);
assert(std::abs(dist.variance() - 2.0f) < threshold);
assert(std::abs(dist.standard_deviation() - 1.4142135f) < threshold);
assert(std::abs(dist.probability_density(5) - 0.03125) < threshold);
assert(std::abs(dist.cumulative_distribution(6) - 0.984375) < threshold);
assert(std::abs(dist.inverse_cumulative_distribution(
dist.cumulative_distribution(8)) -
8) < threshold);
assert(std::abs(dist.range_tries() - 1.0f) < threshold);
assert(std::abs(dist.range_tries(3) - 0.25f) < threshold);
assert(std::abs(dist.range_tries(5, 11) - 0.062011f) < threshold);
std::cout << "All tests passed" << std::endl;
sample_test(dist);
dist = probability::geometric_dist::geometric_distribution(0.8f);
std::cout << "Starting tests for p = 0.8..." << std::endl;
assert(std::abs(dist.expected_value() - 1.25f) < threshold);
assert(std::abs(dist.variance() - 0.3125f) < threshold);
assert(std::abs(dist.standard_deviation() - 0.559016f) < threshold);
assert(std::abs(dist.probability_density(5) - 0.00128) < threshold);
assert(std::abs(dist.cumulative_distribution(6) - 0.999936) < threshold);
assert(std::abs(dist.inverse_cumulative_distribution(
dist.cumulative_distribution(8)) -
8) < threshold);
assert(std::abs(dist.range_tries() - 1.0f) < threshold);
assert(std::abs(dist.range_tries(3) - 0.04f) < threshold);
assert(std::abs(dist.range_tries(5, 11) - 0.00159997f) < threshold);
std::cout << "All tests have successfully passed!" << std::endl;
sample_test(dist);
}
/**
* @brief Main function
* @return 0 on exit
*/
int main() {
srand(time(nullptr));
test(); // run self-test implementations
return 0;
}