mirror of
https://hub.njuu.cf/TheAlgorithms/C-Plus-Plus.git
synced 2023-10-11 13:05:55 +08:00
101 lines
3.1 KiB
C++
101 lines
3.1 KiB
C++
/**
|
|
* @file
|
|
* @brief Program to find the [Longest Palindormic
|
|
* Subsequence](https://www.geeksforgeeks.org/longest-palindromic-subsequence-dp-12/) of a string
|
|
*
|
|
* @details
|
|
* [Palindrome](https://en.wikipedia.org/wiki/Palindrome) string sequence of
|
|
* characters which reads the same backward as forward
|
|
* [Subsequence](https://en.wikipedia.org/wiki/Subsequence) is a sequence that
|
|
* can be derived from another sequence by deleting some or no elements without
|
|
* changing the order of the remaining elements.
|
|
|
|
* @author [Anjali Jha](https://github.com/anjali1903)
|
|
*/
|
|
|
|
#include <cassert> /// for assert
|
|
#include <string> /// for std::string
|
|
#include <vector> /// for std::vector
|
|
|
|
/**
|
|
* @namespace
|
|
* @brief Dynamic Programming algorithms
|
|
*/
|
|
namespace dynamic_programming {
|
|
/**
|
|
* @brief Function that returns the longest palindromic
|
|
* subsequence of a string
|
|
* @param a string whose longest palindromic subsequence is to be found
|
|
* @returns longest palindromic subsequence of the string
|
|
*/
|
|
std::string lps(const std::string& a) {
|
|
const auto b = std::string(a.rbegin(), a.rend());
|
|
const auto m = a.length();
|
|
using ind_type = std::string::size_type;
|
|
std::vector<std::vector<ind_type> > res(m + 1,
|
|
std::vector<ind_type>(m + 1));
|
|
|
|
// Finding the length of the longest
|
|
// palindromic subsequence and storing
|
|
// in a 2D array in bottoms-up manner
|
|
for (ind_type i = 0; i <= m; i++) {
|
|
for (ind_type j = 0; j <= m; j++) {
|
|
if (i == 0 || j == 0) {
|
|
res[i][j] = 0;
|
|
} else if (a[i - 1] == b[j - 1]) {
|
|
res[i][j] = res[i - 1][j - 1] + 1;
|
|
} else {
|
|
res[i][j] = std::max(res[i - 1][j], res[i][j - 1]);
|
|
}
|
|
}
|
|
}
|
|
// Length of longest palindromic subsequence
|
|
auto idx = res[m][m];
|
|
// Creating string of index+1 length
|
|
std::string ans(idx, '\0');
|
|
ind_type i = m, j = m;
|
|
|
|
// starting from right-most bottom-most corner
|
|
// and storing them one by one in ans
|
|
while (i > 0 && j > 0) {
|
|
// if current characters in a and b are same
|
|
// then it is a part of the ans
|
|
if (a[i - 1] == b[j - 1]) {
|
|
ans[idx - 1] = a[i - 1];
|
|
i--;
|
|
j--;
|
|
idx--;
|
|
}
|
|
// If they are not same, find the larger of the
|
|
// two and move in that direction
|
|
else if (res[i - 1][j] > res[i][j - 1]) {
|
|
i--;
|
|
} else {
|
|
j--;
|
|
}
|
|
}
|
|
|
|
return ans;
|
|
}
|
|
} // namespace dynamic_programming
|
|
|
|
/**
|
|
* @brief Self-test implementations
|
|
* @returns void
|
|
*/
|
|
static void test() {
|
|
assert(dynamic_programming::lps("radar") == "radar");
|
|
assert(dynamic_programming::lps("abbcbaa") == "abcba");
|
|
assert(dynamic_programming::lps("bbbab") == "bbbb");
|
|
assert(dynamic_programming::lps("") == "");
|
|
}
|
|
|
|
/**
|
|
* @brief Main Function
|
|
* @returns 0 on exit
|
|
*/
|
|
int main() {
|
|
test(); // execute the tests
|
|
return 0;
|
|
}
|