TheAlgorithms-C-Plus-Plus/math/eulers_totient_function.cpp
realstealthninja 4b740d464c
fix: fit euler's totient to the contribution guidelines (#2447)
* fix: fit euler's totient to the contribution guidelines.

* Update math/eulers_totient_function.cpp

Co-authored-by: David Leal <halfpacho@gmail.com>

* Update math/eulers_totient_function.cpp

Co-authored-by: David Leal <halfpacho@gmail.com>

* fix: add more tests

notes: i should have added euler's number first

* fix: revert description

* Update math/eulers_totient_function.cpp

Co-authored-by: David Leal <halfpacho@gmail.com>

* Update math/eulers_totient_function.cpp

Co-authored-by: David Leal <halfpacho@gmail.com>

* chore: apply suggestions from code review

* chore: apply suggestions from code review

---------

Co-authored-by: David Leal <halfpacho@gmail.com>
2023-04-28 13:56:52 -06:00

79 lines
2.2 KiB
C++

/**
* @file
* @brief Implementation of [Euler's Totient](https://en.wikipedia.org/wiki/Euler%27s_totient_function)
* @description
* Euler Totient Function is also known as phi function.
* \f[\phi(n) =
* \phi\left({p_1}^{a_1}\right)\cdot\phi\left({p_2}^{a_2}\right)\ldots\f] where
* \f$p_1\f$, \f$p_2\f$, \f$\ldots\f$ are prime factors of n.
* <br/>3 Euler's properties:
* 1. \f$\phi(n) = n-1\f$
* 2. \f$\phi(n^k) = n^k - n^{k-1}\f$
* 3. \f$\phi(a,b) = \phi(a)\cdot\phi(b)\f$ where a and b are relative primes.
*
* Applying this 3 properties on the first equation.
* \f[\phi(n) =
* n\cdot\left(1-\frac{1}{p_1}\right)\cdot\left(1-\frac{1}{p_2}\right)\cdots\f]
* where \f$p_1\f$,\f$p_2\f$... are prime factors.
* Hence Implementation in \f$O\left(\sqrt{n}\right)\f$.
* <br/>Some known values are:
* * \f$\phi(100) = 40\f$
* * \f$\phi(1) = 1\f$
* * \f$\phi(17501) = 15120\f$
* * \f$\phi(1420) = 560\f$
* @author [Mann Mehta](https://github.com/mann2108)
*/
#include <iostream> /// for IO operations
#include <cassert> /// for assert
/**
* @brief Mathematical algorithms
* @namespace
*/
namespace math {
/**
* @brief Function to calculate Euler's Totient
* @param n the number to find the Euler's Totient of
*/
uint64_t phiFunction(uint64_t n) {
uint64_t result = n;
for (uint64_t i = 2; i * i <= n; i++) {
if (n % i != 0) continue;
while (n % i == 0) n /= i;
result -= result / i;
}
if (n > 1) result -= result / n;
return result;
}
} // namespace math
/**
* @brief Self-test implementations
* @returns void
*/
static void test() {
assert(math::phiFunction(1) == 1);
assert(math::phiFunction(2) == 1);
assert(math::phiFunction(10) == 4);
assert(math::phiFunction(123456) == 41088);
assert(math::phiFunction(808017424794) == 263582333856);
assert(math::phiFunction(3141592) == 1570792);
assert(math::phiFunction(27182818) == 12545904);
std::cout << "All tests have successfully passed!\n";
}
/**
* @brief Main function
* @param argc commandline argument count (ignored)
* @param argv commandline array of arguments (ignored)
* @returns 0 on exit
*/
int main(int argc, char *argv[]) {
test();
return 0;
}