mirror of
https://hub.njuu.cf/TheAlgorithms/C-Plus-Plus.git
synced 2023-10-11 13:05:55 +08:00
33750ec1f8
* fix: make N_bonacci return an array of size m * tests: simplify test, add new test cases * style: remove unused include, update include justifications * fix: cover the case n == 0
108 lines
3.1 KiB
C++
108 lines
3.1 KiB
C++
/**
|
|
* @file
|
|
* @brief Implementation of the
|
|
* [N-bonacci](http://oeis.org/wiki/N-bonacci_numbers) series
|
|
*
|
|
* @details
|
|
* In general, in N-bonacci sequence,
|
|
* we generate sum of preceding N numbers from the next term.
|
|
*
|
|
* For example, a 3-bonacci sequence is the following:
|
|
* 0, 0, 1, 1, 2, 4, 7, 13, 24, 44, 81
|
|
* In this code we take N and M as input where M is the number of terms
|
|
* to be printed of the N-bonacci series
|
|
*
|
|
* @author [Swastika Gupta](https://github.com/Swastyy)
|
|
*/
|
|
|
|
#include <cassert> /// for assert
|
|
#include <iostream> /// for std::cout
|
|
#include <vector> /// for std::vector
|
|
|
|
/**
|
|
* @namespace math
|
|
* @brief Mathematical algorithms
|
|
*/
|
|
namespace math {
|
|
/**
|
|
* @namespace n_bonacci
|
|
* @brief Functions for the [N-bonacci](http://oeis.org/wiki/N-bonacci_numbers)
|
|
* implementation
|
|
*/
|
|
namespace n_bonacci {
|
|
/**
|
|
* @brief Finds the N-Bonacci series for the `n` parameter value and `m`
|
|
* parameter terms
|
|
* @param n is in the N-Bonacci series
|
|
* @param m is the number of terms in the N-Bonacci sequence
|
|
* @returns the n-bonacci sequence as vector array
|
|
*/
|
|
std::vector<uint64_t> N_bonacci(const uint64_t &n, const uint64_t &m) {
|
|
std::vector<uint64_t> a(
|
|
m, 0); // we create an array of size m filled with zeros
|
|
if (m < n || n == 0) {
|
|
return a;
|
|
}
|
|
|
|
a[n - 1] = 1; /// we initialise the (n-1)th term as 1 which is the sum of
|
|
/// preceding N zeros
|
|
if (n == m) {
|
|
return a;
|
|
}
|
|
a[n] = 1; /// similarily the sum of preceding N zeros and the (N+1)th 1 is
|
|
/// also 1
|
|
for (uint64_t i = n + 1; i < m; i++) {
|
|
// this is an optimized solution that works in O(M) time and takes O(M)
|
|
// extra space here we use the concept of the sliding window the current
|
|
// term can be computed using the given formula
|
|
a[i] = 2 * a[i - 1] - a[i - 1 - n];
|
|
}
|
|
return a;
|
|
}
|
|
} // namespace n_bonacci
|
|
} // namespace math
|
|
|
|
/**
|
|
* @brief Self-test implementations
|
|
* @returns void
|
|
*/
|
|
static void test() {
|
|
struct TestCase {
|
|
const uint64_t n;
|
|
const uint64_t m;
|
|
const std::vector<uint64_t> expected;
|
|
TestCase(const uint64_t in_n, const uint64_t in_m,
|
|
std::initializer_list<uint64_t> data)
|
|
: n(in_n), m(in_m), expected(data) {
|
|
assert(data.size() == m);
|
|
}
|
|
};
|
|
const std::vector<TestCase> test_cases = {
|
|
TestCase(0, 0, {}),
|
|
TestCase(0, 1, {0}),
|
|
TestCase(0, 2, {0, 0}),
|
|
TestCase(1, 0, {}),
|
|
TestCase(1, 1, {1}),
|
|
TestCase(1, 2, {1, 1}),
|
|
TestCase(1, 3, {1, 1, 1}),
|
|
TestCase(5, 15, {0, 0, 0, 0, 1, 1, 2, 4, 8, 16, 31, 61, 120, 236, 464}),
|
|
TestCase(
|
|
6, 17,
|
|
{0, 0, 0, 0, 0, 1, 1, 2, 4, 8, 16, 32, 63, 125, 248, 492, 976}),
|
|
TestCase(56, 15, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0})};
|
|
|
|
for (const auto &tc : test_cases) {
|
|
assert(math::n_bonacci::N_bonacci(tc.n, tc.m) == tc.expected);
|
|
}
|
|
std::cout << "passed" << std::endl;
|
|
}
|
|
|
|
/**
|
|
* @brief Main function
|
|
* @returns 0 on exit
|
|
*/
|
|
int main() {
|
|
test(); // run self-test implementations
|
|
return 0;
|
|
}
|