mirror of
https://hub.njuu.cf/TheAlgorithms/C-Plus-Plus.git
synced 2023-10-11 13:05:55 +08:00
ea76786f12
* Implementated Grahamscan Algorithm for Convex Hull * Update graham_scan_algorithm.cpp * Update graham_scan_functions.h * Update graham_scan_algorithm.cpp * Update graham_scan_functions.h * Update graham_scan_algorithm.cpp * Update and rename graham_scan_functions.h to graham_scan_functions.hpp * Update geometry/graham_scan_algorithm.cpp Co-authored-by: David Leal <halfpacho@gmail.com> * Update geometry/graham_scan_algorithm.cpp Co-authored-by: David Leal <halfpacho@gmail.com> * Update geometry/graham_scan_functions.hpp Co-authored-by: David Leal <halfpacho@gmail.com> * Update geometry/graham_scan_functions.hpp Co-authored-by: David Leal <halfpacho@gmail.com> * updating DIRECTORY.md * clang-format and clang-tidy fixes fore89e4c8c
* clang-format and clang-tidy fixes for7df4778f
* Fix #1 * Update graham_scan_functions.hpp * Delete composite_simpson_rule.cpp * Delete inverse_fast_fourier_transform.cpp * Fix #2 * updating DIRECTORY.md * clang-format and clang-tidy fixes for69b6832b
* Fix #3 * clang-format and clang-tidy fixes for1c05ca7c
* Update graham_scan_functions.hpp * Fix #4 * clang-format and clang-tidy fixes for2957fd21
* Create composite_simpson_rule.cpp * updating DIRECTORY.md * Create inverse_fast_fourier_transform.cpp * updating DIRECTORY.md * clang-format and clang-tidy fixes for405d21a5
* clang-format and clang-tidy fixes for333ef5ca
* Update geometry/graham_scan_functions.hpp Co-authored-by: David Leal <halfpacho@gmail.com> * Update geometry/graham_scan_algorithm.cpp Co-authored-by: David Leal <halfpacho@gmail.com> * Update geometry/graham_scan_algorithm.cpp Co-authored-by: David Leal <halfpacho@gmail.com> * Update geometry/graham_scan_algorithm.cpp Co-authored-by: David Leal <halfpacho@gmail.com> * Update geometry/graham_scan_functions.hpp Co-authored-by: David Leal <halfpacho@gmail.com> * Update geometry/graham_scan_algorithm.cpp Co-authored-by: David Leal <halfpacho@gmail.com> * Update geometry/graham_scan_algorithm.cpp Co-authored-by: David Leal <halfpacho@gmail.com> * clang-format and clang-tidy fixes foree4cb635
* Update graham_scan_algorithm.cpp * Update graham_scan_functions.hpp * clang-format and clang-tidy fixes forf2f69234
* Update graham_scan_functions.hpp * Create partition_problem.cpp * Update partition_problem.cpp * Delete partition_problem.cpp Co-authored-by: David Leal <halfpacho@gmail.com> Co-authored-by: github-actions <${GITHUB_ACTOR}@users.noreply.github.com>
210 lines
8.2 KiB
C++
210 lines
8.2 KiB
C++
/******************************************************************************
|
||
* @file
|
||
* @brief Implementation of the [Convex
|
||
* Hull](https://en.wikipedia.org/wiki/Convex_hull) implementation using [Graham
|
||
* Scan](https://en.wikipedia.org/wiki/Graham_scan)
|
||
* @details
|
||
* In geometry, the convex hull or convex envelope or convex closure of a shape
|
||
* is the smallest convex set that contains it. The convex hull may be defined
|
||
* either as the intersection of all convex sets containing a given subset of a
|
||
* Euclidean space, or equivalently as the set of all convex combinations of
|
||
* points in the subset. For a bounded subset of the plane, the convex hull may
|
||
* be visualized as the shape enclosed by a rubber band stretched around the
|
||
* subset.
|
||
*
|
||
* The worst case time complexity of Jarvis’s Algorithm is O(n^2). Using
|
||
* Graham’s scan algorithm, we can find Convex Hull in O(nLogn) time.
|
||
*
|
||
* ### Implementation
|
||
*
|
||
* Sort points
|
||
* We first find the bottom-most point. The idea is to pre-process
|
||
* points be sorting them with respect to the bottom-most point. Once the points
|
||
* are sorted, they form a simple closed path.
|
||
* The sorting criteria is to use the orientation to compare angles without
|
||
* actually computing them (See the compare() function below) because
|
||
* computation of actual angles would be inefficient since trigonometric
|
||
* functions are not simple to evaluate.
|
||
*
|
||
* Accept or Reject Points
|
||
* Once we have the closed path, the next step is to traverse the path and
|
||
* remove concave points on this path using orientation. The first two points in
|
||
* sorted array are always part of Convex Hull. For remaining points, we keep
|
||
* track of recent three points, and find the angle formed by them. Let the
|
||
* three points be prev(p), curr(c) and next(n). If orientation of these points
|
||
* (considering them in same order) is not counterclockwise, we discard c,
|
||
* otherwise we keep it.
|
||
*
|
||
* @author [Lajat Manekar](https://github.com/Lazeeez)
|
||
*
|
||
*******************************************************************************/
|
||
#include <algorithm> /// for std::swap
|
||
#include <cstdlib> /// for mathematics and datatype conversion
|
||
#include <iostream> /// for IO operations
|
||
#include <stack> /// for std::stack
|
||
#include <vector> /// for std::vector
|
||
|
||
/******************************************************************************
|
||
* @namespace geometry
|
||
* @brief geometric algorithms
|
||
*******************************************************************************/
|
||
namespace geometry {
|
||
|
||
/******************************************************************************
|
||
* @namespace graham scan
|
||
* @brief convex hull algorithm
|
||
*******************************************************************************/
|
||
namespace grahamscan {
|
||
|
||
/******************************************************************************
|
||
* @struct Point
|
||
* @brief for X and Y co-ordinates of the co-ordinate.
|
||
*******************************************************************************/
|
||
struct Point {
|
||
int x, y;
|
||
};
|
||
|
||
// A global point needed for sorting points with reference
|
||
// to the first point Used in compare function of qsort()
|
||
|
||
Point p0;
|
||
|
||
/******************************************************************************
|
||
* @brief A utility function to find next to top in a stack.
|
||
* @param S Stack to be used for the process.
|
||
* @returns @param Point Co-ordinates of the Point <int, int>
|
||
*******************************************************************************/
|
||
Point nextToTop(std::stack<Point> *S) {
|
||
Point p = S->top();
|
||
S->pop();
|
||
Point res = S->top();
|
||
S->push(p);
|
||
return res;
|
||
}
|
||
|
||
/******************************************************************************
|
||
* @brief A utility function to return square of distance between p1 and p2.
|
||
* @param p1 Co-ordinates of Point 1 <int, int>.
|
||
* @param p2 Co-ordinates of Point 2 <int, int>.
|
||
* @returns @param int distance between p1 and p2.
|
||
*******************************************************************************/
|
||
int distSq(Point p1, Point p2) {
|
||
return (p1.x - p2.x) * (p1.x - p2.x) + (p1.y - p2.y) * (p1.y - p2.y);
|
||
}
|
||
|
||
/******************************************************************************
|
||
* @brief To find orientation of ordered triplet (p, q, r).
|
||
* @param p Co-ordinates of Point p <int, int>.
|
||
* @param q Co-ordinates of Point q <int, int>.
|
||
* @param r Co-ordinates of Point r <int, int>.
|
||
* @returns @param int 0 --> p, q and r are collinear, 1 --> Clockwise,
|
||
* 2 --> Counterclockwise
|
||
*******************************************************************************/
|
||
int orientation(Point p, Point q, Point r) {
|
||
int val = (q.y - p.y) * (r.x - q.x) - (q.x - p.x) * (r.y - q.y);
|
||
|
||
if (val == 0) {
|
||
return 0; // collinear
|
||
}
|
||
return (val > 0) ? 1 : 2; // clock or counter-clock wise
|
||
}
|
||
|
||
/******************************************************************************
|
||
* @brief A function used by library function qsort() to sort an array of
|
||
* points with respect to the first point
|
||
* @param vp1 Co-ordinates of Point 1 <int, int>.
|
||
* @param vp2 Co-ordinates of Point 2 <int, int>.
|
||
* @returns @param int distance between p1 and p2.
|
||
*******************************************************************************/
|
||
int compare(const void *vp1, const void *vp2) {
|
||
auto *p1 = static_cast<const Point *>(vp1);
|
||
auto *p2 = static_cast<const Point *>(vp2);
|
||
|
||
// Find orientation
|
||
int o = orientation(p0, *p1, *p2);
|
||
if (o == 0) {
|
||
return (distSq(p0, *p2) >= distSq(p0, *p1)) ? -1 : 1;
|
||
}
|
||
|
||
return (o == 2) ? -1 : 1;
|
||
}
|
||
|
||
/******************************************************************************
|
||
* @brief Prints convex hull of a set of n points.
|
||
* @param points vector of Point<int, int> with co-ordinates.
|
||
* @param size Size of the vector.
|
||
* @returns @param vector vector of Conver Hull.
|
||
*******************************************************************************/
|
||
std::vector<Point> convexHull(std::vector<Point> points, uint64_t size) {
|
||
// Find the bottom-most point
|
||
int ymin = points[0].y, min = 0;
|
||
for (int i = 1; i < size; i++) {
|
||
int y = points[i].y;
|
||
|
||
// Pick the bottom-most or chose the left-most point in case of tie
|
||
if ((y < ymin) || (ymin == y && points[i].x < points[min].x)) {
|
||
ymin = points[i].y, min = i;
|
||
}
|
||
}
|
||
|
||
// Place the bottom-most point at first position
|
||
std::swap(points[0], points[min]);
|
||
|
||
// Sort n-1 points with respect to the first point. A point p1 comes
|
||
// before p2 in sorted output if p2 has larger polar angle
|
||
// (in counterclockwise direction) than p1.
|
||
p0 = points[0];
|
||
qsort(&points[1], size - 1, sizeof(Point), compare);
|
||
|
||
// If two or more points make same angle with p0, Remove all but the one
|
||
// that is farthest from p0 Remember that, in above sorting, our criteria
|
||
// was to keep the farthest point at the end when more than one points have
|
||
// same angle.
|
||
int m = 1; // Initialize size of modified array
|
||
for (int i = 1; i < size; i++) {
|
||
// Keep removing i while angle of i and i+1 is same with respect to p0
|
||
while (i < size - 1 && orientation(p0, points[i], points[i + 1]) == 0) {
|
||
i++;
|
||
}
|
||
|
||
points[m] = points[i];
|
||
m++; // Update size of modified array
|
||
}
|
||
|
||
// If modified array of points has less than 3 points, convex hull is not
|
||
// possible
|
||
if (m < 3) {
|
||
return {};
|
||
};
|
||
|
||
// Create an empty stack and push first three points to it.
|
||
std::stack<Point> St;
|
||
St.push(points[0]);
|
||
St.push(points[1]);
|
||
St.push(points[2]);
|
||
|
||
// Process remaining n-3 points
|
||
for (int i = 3; i < m; i++) {
|
||
// Keep removing top while the angle formed by
|
||
// points next-to-top, top, and points[i] makes
|
||
// a non-left turn
|
||
while (St.size() > 1 &&
|
||
orientation(nextToTop(&St), St.top(), points[i]) != 2) {
|
||
St.pop();
|
||
}
|
||
St.push(points[i]);
|
||
}
|
||
|
||
std::vector<Point> result;
|
||
// Now stack has the output points, push them into the resultant vector
|
||
while (!St.empty()) {
|
||
Point p = St.top();
|
||
result.push_back(p);
|
||
St.pop();
|
||
}
|
||
|
||
return result; // return resultant vector with Convex Hull co-ordinates.
|
||
}
|
||
} // namespace grahamscan
|
||
} // namespace geometry
|