mirror of
https://hub.njuu.cf/TheAlgorithms/C-Plus-Plus.git
synced 2023-10-11 13:05:55 +08:00
354 lines
12 KiB
C++
354 lines
12 KiB
C++
/**
|
|
* \addtogroup machine_learning Machine Learning Algorithms
|
|
* @{
|
|
* \file
|
|
* \brief [Adaptive Linear Neuron
|
|
* (ADALINE)](https://en.wikipedia.org/wiki/ADALINE) implementation
|
|
*
|
|
* \author [Krishna Vedala](https://github.com/kvedala)
|
|
*
|
|
* \details
|
|
* <a href="https://commons.wikimedia.org/wiki/File:Adaline_flow_chart.gif"><img
|
|
* src="https://upload.wikimedia.org/wikipedia/commons/b/be/Adaline_flow_chart.gif"
|
|
* alt="Structure of an ADALINE network. Source: Wikipedia"
|
|
* style="width:200px; float:right;"></a>
|
|
*
|
|
* ADALINE is one of the first and simplest single layer artificial neural
|
|
* network. The algorithm essentially implements a linear function
|
|
* \f[ f\left(x_0,x_1,x_2,\ldots\right) =
|
|
* \sum_j x_jw_j+\theta
|
|
* \f]
|
|
* where \f$x_j\f$ are the input features of a sample, \f$w_j\f$ are the
|
|
* coefficients of the linear function and \f$\theta\f$ is a constant. If we
|
|
* know the \f$w_j\f$, then for any given set of features, \f$y\f$ can be
|
|
* computed. Computing the \f$w_j\f$ is a supervised learning algorithm wherein
|
|
* a set of features and their corresponding outputs are given and weights are
|
|
* computed using stochastic gradient descent method.
|
|
*/
|
|
|
|
#include <cassert>
|
|
#include <climits>
|
|
#include <cmath>
|
|
#include <cstdlib>
|
|
#include <ctime>
|
|
#include <iostream>
|
|
#include <numeric>
|
|
#include <vector>
|
|
|
|
#define MAX_ITER 500 // INT_MAX ///< Maximum number of iterations to learn
|
|
|
|
/** \namespace machine_learning
|
|
* \brief Machine learning algorithms
|
|
*/
|
|
namespace machine_learning {
|
|
class adaline {
|
|
public:
|
|
/**
|
|
* Default constructor
|
|
* \param[in] num_features number of features present
|
|
* \param[in] eta learning rate (optional, default=0.1)
|
|
* \param[in] convergence accuracy (optional,
|
|
* default=\f$1\times10^{-5}\f$)
|
|
*/
|
|
adaline(int num_features, const double eta = 0.01f,
|
|
const double accuracy = 1e-5)
|
|
: eta(eta), accuracy(accuracy) {
|
|
if (eta <= 0) {
|
|
std::cerr << "learning rate should be positive and nonzero"
|
|
<< std::endl;
|
|
std::exit(EXIT_FAILURE);
|
|
}
|
|
|
|
weights = std::vector<double>(
|
|
num_features +
|
|
1); // additional weight is for the constant bias term
|
|
|
|
// initialize with random weights in the range [-50, 49]
|
|
for (int i = 0; i < weights.size(); i++) weights[i] = 1.f;
|
|
// weights[i] = (static_cast<double>(std::rand() % 100) - 50);
|
|
}
|
|
|
|
/**
|
|
* Operator to print the weights of the model
|
|
*/
|
|
friend std::ostream &operator<<(std::ostream &out, const adaline &ada) {
|
|
out << "<";
|
|
for (int i = 0; i < ada.weights.size(); i++) {
|
|
out << ada.weights[i];
|
|
if (i < ada.weights.size() - 1)
|
|
out << ", ";
|
|
}
|
|
out << ">";
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* predict the output of the model for given set of features
|
|
* \param[in] x input vector
|
|
* \param[out] out optional argument to return neuron output before
|
|
* applying activation function (optional, `nullptr` to ignore) \returns
|
|
* model prediction output
|
|
*/
|
|
int predict(const std::vector<double> &x, double *out = nullptr) {
|
|
if (!check_size_match(x))
|
|
return 0;
|
|
|
|
double y = weights.back(); // assign bias value
|
|
|
|
// for (int i = 0; i < x.size(); i++) y += x[i] * weights[i];
|
|
y = std::inner_product(x.begin(), x.end(), weights.begin(), y);
|
|
|
|
if (out != nullptr) // if out variable is provided
|
|
*out = y;
|
|
|
|
return activation(y); // quantizer: apply ADALINE threshold function
|
|
}
|
|
|
|
/**
|
|
* Update the weights of the model using supervised learning for one
|
|
* feature vector \param[in] x feature vector \param[in] y known output
|
|
* value \returns correction factor
|
|
*/
|
|
double fit(const std::vector<double> &x, const int &y) {
|
|
if (!check_size_match(x))
|
|
return 0;
|
|
|
|
/* output of the model with current weights */
|
|
int p = predict(x);
|
|
int prediction_error = y - p; // error in estimation
|
|
double correction_factor = eta * prediction_error;
|
|
|
|
/* update each weight, the last weight is the bias term */
|
|
for (int i = 0; i < x.size(); i++) {
|
|
weights[i] += correction_factor * x[i];
|
|
}
|
|
weights[x.size()] += correction_factor; // update bias
|
|
|
|
return correction_factor;
|
|
}
|
|
|
|
/**
|
|
* Update the weights of the model using supervised learning for an
|
|
* array of vectors. \param[in] X array of feature vector \param[in] y
|
|
* known output value for each feature vector
|
|
*/
|
|
template <int N>
|
|
void fit(std::vector<double> const (&X)[N], const int *y) {
|
|
double avg_pred_error = 1.f;
|
|
|
|
int iter;
|
|
for (iter = 0; (iter < MAX_ITER) && (avg_pred_error > accuracy);
|
|
iter++) {
|
|
avg_pred_error = 0.f;
|
|
|
|
// perform fit for each sample
|
|
for (int i = 0; i < N; i++) {
|
|
double err = fit(X[i], y[i]);
|
|
avg_pred_error += std::abs(err);
|
|
}
|
|
avg_pred_error /= N;
|
|
|
|
// Print updates every 200th iteration
|
|
// if (iter % 100 == 0)
|
|
std::cout << "\tIter " << iter << ": Training weights: " << *this
|
|
<< "\tAvg error: " << avg_pred_error << std::endl;
|
|
}
|
|
|
|
if (iter < MAX_ITER)
|
|
|
|
std::cout << "Converged after " << iter << " iterations."
|
|
<< std::endl;
|
|
else
|
|
std::cout << "Did not converge after " << iter << " iterations."
|
|
<< std::endl;
|
|
}
|
|
|
|
int activation(double x) { return x > 0 ? 1 : -1; }
|
|
|
|
private:
|
|
/**
|
|
* convenient function to check if input feature vector size matches the
|
|
* model weights size
|
|
* \param[in] x fecture vector to check
|
|
* \returns `true` size matches
|
|
* \returns `false` size does not match
|
|
*/
|
|
bool check_size_match(const std::vector<double> &x) {
|
|
if (x.size() != (weights.size() - 1)) {
|
|
std::cerr << __func__ << ": "
|
|
<< "Number of features in x does not match the feature "
|
|
"dimension in model!"
|
|
<< std::endl;
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
const double eta; ///< learning rate of the algorithm
|
|
const double accuracy; ///< model fit convergence accuracy
|
|
std::vector<double> weights; ///< weights of the neural network
|
|
};
|
|
|
|
} // namespace machine_learning
|
|
|
|
using machine_learning::adaline;
|
|
|
|
/** @} */
|
|
|
|
/**
|
|
* test function to predict points in a 2D coordinate system above the line
|
|
* \f$x=y\f$ as +1 and others as -1.
|
|
* Note that each point is defined by 2 values or 2 features.
|
|
* \param[in] eta learning rate (optional, default=0.01)
|
|
*/
|
|
void test1(double eta = 0.01) {
|
|
adaline ada(2, eta); // 2 features
|
|
|
|
const int N = 10; // number of sample points
|
|
|
|
std::vector<double> X[N] = {{0, 1}, {1, -2}, {2, 3}, {3, -1},
|
|
{4, 1}, {6, -5}, {-7, -3}, {-8, 5},
|
|
{-9, 2}, {-10, -15}};
|
|
int y[] = {1, -1, 1, -1, -1, -1, 1, 1, 1, -1}; // corresponding y-values
|
|
|
|
std::cout << "------- Test 1 -------" << std::endl;
|
|
std::cout << "Model before fit: " << ada << std::endl;
|
|
|
|
ada.fit(X, y);
|
|
std::cout << "Model after fit: " << ada << std::endl;
|
|
|
|
int predict = ada.predict({5, -3});
|
|
std::cout << "Predict for x=(5,-3): " << predict;
|
|
assert(predict == -1);
|
|
std::cout << " ...passed" << std::endl;
|
|
|
|
predict = ada.predict({5, 8});
|
|
std::cout << "Predict for x=(5,8): " << predict;
|
|
assert(predict == 1);
|
|
std::cout << " ...passed" << std::endl;
|
|
}
|
|
|
|
/**
|
|
* test function to predict points in a 2D coordinate system above the line
|
|
* \f$x+3y=-1\f$ as +1 and others as -1.
|
|
* Note that each point is defined by 2 values or 2 features.
|
|
* The function will create random sample points for training and test purposes.
|
|
* \param[in] eta learning rate (optional, default=0.01)
|
|
*/
|
|
void test2(double eta = 0.01) {
|
|
adaline ada(2, eta); // 2 features
|
|
|
|
const int N = 50; // number of sample points
|
|
|
|
std::vector<double> X[N];
|
|
int Y[N]; // corresponding y-values
|
|
|
|
// generate sample points in the interval
|
|
// [-range2/100 , (range2-1)/100]
|
|
int range = 500; // sample points full-range
|
|
int range2 = range >> 1; // sample points half-range
|
|
for (int i = 0; i < N; i++) {
|
|
double x0 = ((std::rand() % range) - range2) / 100.f;
|
|
double x1 = ((std::rand() % range) - range2) / 100.f;
|
|
X[i] = {x0, x1};
|
|
Y[i] = (x0 + 3. * x1) > -1 ? 1 : -1;
|
|
}
|
|
|
|
std::cout << "------- Test 2 -------" << std::endl;
|
|
std::cout << "Model before fit: " << ada << std::endl;
|
|
|
|
ada.fit(X, Y);
|
|
std::cout << "Model after fit: " << ada << std::endl;
|
|
|
|
int N_test_cases = 5;
|
|
for (int i = 0; i < N_test_cases; i++) {
|
|
double x0 = ((std::rand() % range) - range2) / 100.f;
|
|
double x1 = ((std::rand() % range) - range2) / 100.f;
|
|
|
|
int predict = ada.predict({x0, x1});
|
|
|
|
std::cout << "Predict for x=(" << x0 << "," << x1 << "): " << predict;
|
|
|
|
int expected_val = (x0 + 3. * x1) > -1 ? 1 : -1;
|
|
assert(predict == expected_val);
|
|
std::cout << " ...passed" << std::endl;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* test function to predict points in a 3D coordinate system lying within the
|
|
* sphere of radius 1 and centre at origin as +1 and others as -1. Note that
|
|
* each point is defined by 3 values but we use 6 features. The function will
|
|
* create random sample points for training and test purposes.
|
|
* The sphere centred at origin and radius 1 is defined as:
|
|
* \f$x^2+y^2+z^2=r^2=1\f$ and if the \f$r^2<1\f$, point lies within the sphere
|
|
* else, outside.
|
|
*
|
|
* \param[in] eta learning rate (optional, default=0.01)
|
|
*/
|
|
void test3(double eta = 0.01) {
|
|
adaline ada(6, eta); // 2 features
|
|
|
|
const int N = 100; // number of sample points
|
|
|
|
std::vector<double> X[N];
|
|
int Y[N]; // corresponding y-values
|
|
|
|
// generate sample points in the interval
|
|
// [-range2/100 , (range2-1)/100]
|
|
int range = 200; // sample points full-range
|
|
int range2 = range >> 1; // sample points half-range
|
|
for (int i = 0; i < N; i++) {
|
|
double x0 = ((std::rand() % range) - range2) / 100.f;
|
|
double x1 = ((std::rand() % range) - range2) / 100.f;
|
|
double x2 = ((std::rand() % range) - range2) / 100.f;
|
|
X[i] = {x0, x1, x2, x0 * x0, x1 * x1, x2 * x2};
|
|
Y[i] = ((x0 * x0) + (x1 * x1) + (x2 * x2)) <= 1.f ? 1 : -1;
|
|
}
|
|
|
|
std::cout << "------- Test 3 -------" << std::endl;
|
|
std::cout << "Model before fit: " << ada << std::endl;
|
|
|
|
ada.fit(X, Y);
|
|
std::cout << "Model after fit: " << ada << std::endl;
|
|
|
|
int N_test_cases = 5;
|
|
for (int i = 0; i < N_test_cases; i++) {
|
|
double x0 = ((std::rand() % range) - range2) / 100.f;
|
|
double x1 = ((std::rand() % range) - range2) / 100.f;
|
|
double x2 = ((std::rand() % range) - range2) / 100.f;
|
|
|
|
int predict = ada.predict({x0, x1, x2, x0 * x0, x1 * x1, x2 * x2});
|
|
|
|
std::cout << "Predict for x=(" << x0 << "," << x1 << "," << x2
|
|
<< "): " << predict;
|
|
|
|
int expected_val = ((x0 * x0) + (x1 * x1) + (x2 * x2)) <= 1.f ? 1 : -1;
|
|
assert(predict == expected_val);
|
|
std::cout << " ...passed" << std::endl;
|
|
}
|
|
}
|
|
|
|
/** Main function */
|
|
int main(int argc, char **argv) {
|
|
std::srand(std::time(nullptr)); // initialize random number generator
|
|
|
|
double eta = 0.1; // default value of eta
|
|
if (argc == 2) // read eta value from commandline argument if present
|
|
eta = strtof(argv[1], nullptr);
|
|
|
|
test1(eta);
|
|
|
|
std::cout << "Press ENTER to continue..." << std::endl;
|
|
std::cin.get();
|
|
|
|
test2(eta);
|
|
|
|
std::cout << "Press ENTER to continue..." << std::endl;
|
|
std::cin.get();
|
|
|
|
test3(eta);
|
|
|
|
return 0;
|
|
}
|