TheAlgorithms-C-Plus-Plus/math/approximate_pi.cpp
ewd00010 aaf84ab08f
fix: fit approximate_pi.cpp to guidelines (#2499)
* Update approximate_pi.cpp

* clang-format and clang-tidy fixes for 5a951bdf

---------

Co-authored-by: github-actions[bot] <github-actions@users.noreply.github.com>
Co-authored-by: realstealthninja <68815218+realstealthninja@users.noreply.github.com>
Co-authored-by: David Leal <halfpacho@gmail.com>
2023-07-19 14:53:16 -06:00

84 lines
2.3 KiB
C++

/**
* @file
* @brief
* Implementation to calculate an estimate of the [number π
* (Pi)](https://en.wikipedia.org/wiki/File:Pi_30K.gif).
*
* @details
* We take a random point P with coordinates (x, y) such that 0 ≤ x ≤ 1 and 0 ≤
* y ≤ 1. If x² + y² ≤ 1, then the point is inside the quarter disk of radius 1,
* else the point is outside. We know that the probability of the point being
* inside the quarter disk is equal to π/4 double approx(vector<Point> &pts)
* which will use the points pts (drawn at random) to return an estimate of the
* number π
* @note This implementation is better than naive recursive or iterative
* approach.
*
* @author [Qannaf AL-SAHMI](https://github.com/Qannaf)
*/
#include <cassert> /// for assert
#include <cstdlib> /// for std::rand
#include <iostream> /// for IO operations
#include <vector> /// for std::vector
/**
* @namespace math
* @brief Mathematical algorithms
*/
namespace math {
/**
* @brief structure of points containing two numbers, x and y, such that 0 ≤ x ≤
* 1 and 0 ≤ y ≤ 1.
*/
using Point = struct {
double x;
double y;
};
/**
* @brief This function uses the points in a given vector 'pts' (drawn at
* random) to return an approximation of the number π.
* @param pts Each item of pts contains a point. A point is represented by the
* point structure (coded above).
* @return an estimate of the number π.
*/
double approximate_pi(const std::vector<Point> &pts) {
double count = 0; // Points in circle
for (Point p : pts) {
if ((p.x * p.x) + (p.y * p.y) <= 1) {
count++;
}
}
return 4.0 * count / static_cast<double>(pts.size());
}
} // namespace math
/**
* @brief Self-test implementations
* @returns void
*/
static void tests() {
std::vector<math::Point> rands;
for (std::size_t i = 0; i < 100000; i++) {
math::Point p;
p.x = rand() / static_cast<double>(RAND_MAX); // 0 <= x <= 1
p.y = rand() / static_cast<double>(RAND_MAX); // 0 <= y <= 1
rands.push_back(p);
}
assert(math::approximate_pi(rands) > 3.135);
assert(math::approximate_pi(rands) < 3.145);
std::cout << "All tests have successfully passed!" << std::endl;
}
/**
* @brief Main function
* @returns 0 on exit
*/
int main() {
tests(); // run self-test implementations
return 0;
}