TheAlgorithms-C-Plus-Plus/numerical_methods/fast_fourier_transform.cpp
Ameya Chawla 280ddf46b9
Update numerical_methods/fast_fourier_transform.cpp
Co-authored-by: David Leal <halfpacho@gmail.com>
2021-10-18 01:02:17 +05:30

123 lines
3.7 KiB
C++

/**
* @file
* @brief A fast Fourier transform (FFT) is an algorithm that computes the
* discrete Fourier transform (DFT) of a sequence , or its inverse (IDFT) , this algorithm
* has application in use case scenario where a user wants to find points of a function
* in short period time by just using the coefficents of the polynomial function.
* @details
* https://medium.com/@aiswaryamathur/understanding-fast-fourier-transform-from-scratch-to
-solve-polynomial-multiplication-8018d511162f
* @author [Ameya Chawla](https://github.com/ameyachawlaggsipu)
*/
#include<iostream> /// for IO operations
#include<cmath> /// for mathematical-related functions
#include<complex> /// for storing points and coefficents
#include <cassert> /// for assert
# define pi 3.14159265358979323846
/**
* @brief FastFourierTransform is a recursive function which returns list of complex numbers
* @param p List of Coefficents in form of complex numbers
* @param n Count of elements in list p
* @returns p if n==1
* @returns y if n!=1
*/
std::complex<double>* FastFourierTransform(std::complex<double>*p,int n)
{
if(n==1) return p; ///Base Case To return
std::complex<double> om=std::complex<double>(cos(2*pi/n),sin(2*pi/n)); ///Calculating value of omega
std::complex<double> *pe= new std::complex<double>[n/2]; /// Coefficents of even power
std::complex<double> *po= new std::complex<double>[n/2]; ///Coefficents of odd power
int k1=0,k2=0;
for(int j=0;j<n;j++)
{
if(j%2==0){
pe[k1++]=p[j]; ///Assigning values of even coefficents
}
else po[k2++]=p[j]; ///Assigning value of odd coefficents
}
std::complex<double>*ye=FastFourierTransform(pe,n/2);///Recursive Call
std::complex<double>*yo=FastFourierTransform(po,n/2);///Recursive Call
std::complex<double>*y=new std::complex<double>[n];///Final value representation list
for(int i=0;i<n/2;i++)
{
y[i]=ye[i]+pow(om,i)*yo[i]; ///Updating the first n/2 elements
y[i+n/2]=ye[i]-pow(om,i)*yo[i];///Updating the last n/2 elements
}
return y;///Return the list
}
/**
* @brief Self-test implementations
*declaring two test cases and checking for the error
*in predicted and true value is less than 0.000000000001.
* @returns void
*/
static void test() {
/* descriptions of the following test */
std::complex<double> t1[2]={1,2};///Test case 1
std::complex<double> t2[4]={1,2,3,4};///Test case 2
int n1=sizeof(t1)/sizeof(std::complex<double>);
int n2=sizeof(t2)/sizeof(std::complex<double>);
std::complex<double> r1[2]={{3,0},{-1,0} };///True Answer for test case 1
std::complex<double> r2[4]={{10,0},{-2,-2},{-2,0},{-2,2} };///True Answer for test case 2
std::complex<double> *o1=FastFourierTransform(t1,n1);
std::complex<double> *o2=FastFourierTransform(t2,n2);
for(int i=0;i<n1;i++)
{
assert(r1[i].real()-o1->real()<0.000000000001 and r1[i].imag()-o1->imag()<0.000000000001 );/// Comparing for both real and imaginary values for test case 1
o1++;
}
for(int i=0;i<n2;i++)
{
assert(r2[i].real()-o2->real()<0.000000000001 and r2[i].imag()-o2->imag()<0.000000000001 );/// Comparing for both real and imaginary values for test case 2
o2++;
}
}
/**
* @brief Main function
* @param argc commandline argument count (ignored)
* @param argv commandline array of arguments (ignored)
* calls automated test function to test the working of fast fourier transform.
* @returns 0 on exit
*/
int main(int argc, char const *argv[])
{
test(); // run self-test implementations
return 0;
}