TheAlgorithms-C-Plus-Plus/dynamic_programming/tree_height.cpp
2020-04-20 20:37:57 +02:00

71 lines
1.9 KiB
C++

// C++ Program to find height of the tree using bottom-up dynamic programming.
/*
* Given a rooted tree with node 1.
* Task is to find the height of the tree.
* Example: -
* 4
* 1 2
* 1 3
* 2 4
* which can be represented as
* 1
* / \
* 2 3
* |
* 4
*
* Height of the tree : - 2
*/
#include<iostream>
#include<vector>
// global declarations
// no of nodes max limit.
const int MAX = 1e5;
// adjacency list
std::vector<int> adj[MAX];
std::vector<bool> visited;
std::vector<int> dp;
void depth_first_search(int u) {
visited[u] = true;
int child_height = 1;
for (int v : adj[u]) {
if (!visited[v]) {
depth_first_search(v);
// select maximum sub-tree height from all children.
child_height = std::max(child_height, dp[v]+1);
}
}
// assigned the max child height to current visited node.
dp[u] = child_height;
}
int main() {
// number of nodes
int number_of_nodes;
std::cout << "Enter number of nodes of the tree : " << std::endl;
std::cin >> number_of_nodes;
// u, v denotes an undirected edge of tree.
int u, v;
// Tree contains exactly n-1 edges where n denotes the number of nodes.
std::cout << "Enter edges of the tree : " << std::endl;
for (int i = 0; i < number_of_nodes - 1; i++) {
std::cin >> u >> v;
// undirected tree u -> v and v -> u.
adj[u].push_back(v);
adj[v].push_back(u);
}
// initialize all nodes as unvisited.
visited.assign(number_of_nodes+1, false);
// initialize depth of all nodes to 0.
dp.assign(number_of_nodes+1, 0);
// function call which will initialize the height of all nodes.
depth_first_search(1);
std::cout << "Height of the Tree : " << dp[1] << std::endl;
}