mirror of
https://hub.njuu.cf/TheAlgorithms/C-Plus-Plus.git
synced 2023-10-11 13:05:55 +08:00
5147306db3
* Create partition_problem.cpp * Fix #1 * Fix #2 * updating DIRECTORY.md * clang-format and clang-tidy fixes for3b8dbf00
* Update dynamic_programming/partition_problem.cpp Co-authored-by: David Leal <halfpacho@gmail.com> * Update dynamic_programming/partition_problem.cpp Co-authored-by: David Leal <halfpacho@gmail.com> * clang-format and clang-tidy fixes fora152bf75
* Update dynamic_programming/partition_problem.cpp Co-authored-by: David Leal <halfpacho@gmail.com> * Update dynamic_programming/partition_problem.cpp Co-authored-by: David Leal <halfpacho@gmail.com> * Update dynamic_programming/partition_problem.cpp Co-authored-by: David Leal <halfpacho@gmail.com> * clang-format and clang-tidy fixes for1c057113
* Update dynamic_programming/partition_problem.cpp Co-authored-by: David Leal <halfpacho@gmail.com> * Update dynamic_programming/partition_problem.cpp Co-authored-by: David Leal <halfpacho@gmail.com> * clang-format and clang-tidy fixes forbaf20a6f
* Update dynamic_programming/partition_problem.cpp Co-authored-by: David Leal <halfpacho@gmail.com> * clang-format and clang-tidy fixes for749d9337
Co-authored-by: github-actions <${GITHUB_ACTOR}@users.noreply.github.com> Co-authored-by: David Leal <halfpacho@gmail.com>
107 lines
4.2 KiB
C++
107 lines
4.2 KiB
C++
/******************************************************************************
|
||
* @file
|
||
* @brief Implementation of the [Partition
|
||
* Problem](https://en.wikipedia.org/wiki/Partition_problem )
|
||
* @details
|
||
* The partition problem, or number partitioning, is the task of deciding
|
||
* whether a given multiset S of positive integers can be partitioned into two
|
||
* subsets S1 and S2 such that the sum of the numbers in S1 equals the sum of
|
||
* the numbers in S2. Although the partition problem is NP-complete, there is a
|
||
* pseudo-polynomial time dynamic programming solution, and there are heuristics
|
||
* that solve the problem in many instances, either optimally or approximately.
|
||
* For this reason, it has been called "the easiest hard problem".
|
||
*
|
||
* The worst case time complexity of Jarvis’s Algorithm is O(n^2). Using
|
||
* Graham’s scan algorithm, we can find Convex Hull in O(nLogn) time.
|
||
*
|
||
* ### Implementation
|
||
*
|
||
* Step 1
|
||
* Calculate sum of the array. If sum is odd, there can not be two subsets with
|
||
* equal sum, so return false.
|
||
*
|
||
* Step 2
|
||
* If sum of array elements is even, calculate sum/2 and find a subset of array
|
||
* with sum equal to sum/2.
|
||
*
|
||
* @author [Lajat Manekar](https://github.com/Lazeeez)
|
||
*
|
||
*******************************************************************************/
|
||
#include <cassert> /// for assert
|
||
#include <iostream> /// for IO Operations
|
||
#include <numeric> /// for std::accumulate
|
||
#include <vector> /// for std::vector
|
||
|
||
/******************************************************************************
|
||
* @namespace dp
|
||
* @brief Dynamic programming algorithms
|
||
*******************************************************************************/
|
||
namespace dp {
|
||
|
||
/******************************************************************************
|
||
* @namespace partitionProblem
|
||
* @brief Partition problem algorithm
|
||
*******************************************************************************/
|
||
namespace partitionProblem {
|
||
|
||
/******************************************************************************
|
||
* @brief Returns true if arr can be partitioned in two subsets of equal sum,
|
||
* otherwise false
|
||
* @param arr vector containing elements
|
||
* @param size Size of the vector.
|
||
* @returns @param bool whether the vector can be partitioned or not.
|
||
*******************************************************************************/
|
||
bool findPartiion(const std::vector<uint64_t> &arr, uint64_t size) {
|
||
uint64_t sum = std::accumulate(arr.begin(), arr.end(),
|
||
0); // Calculate sum of all elements
|
||
|
||
if (sum % 2 != 0) {
|
||
return false; // if sum is odd, it cannot be divided into two equal sum
|
||
}
|
||
std::vector<bool> part;
|
||
// bool part[sum / 2 + 1];
|
||
|
||
// Initialize the part array as 0
|
||
for (uint64_t it = 0; it <= sum / 2; ++it) {
|
||
part.push_back(false);
|
||
}
|
||
|
||
// Fill the partition table in bottom up manner
|
||
for (uint64_t it = 0; it < size; ++it) {
|
||
// The element to be included in the sum cannot be greater than the sum
|
||
for (uint64_t it2 = sum / 2; it2 >= arr[it];
|
||
--it2) { // Check if sum - arr[i]
|
||
// ould be formed from a subset using elements before index i
|
||
if (part[it2 - arr[it]] == 1 || it2 == arr[it]) {
|
||
part[it2] = true;
|
||
}
|
||
}
|
||
}
|
||
return part[sum / 2];
|
||
}
|
||
} // namespace partitionProblem
|
||
} // namespace dp
|
||
|
||
/*******************************************************************************
|
||
* @brief Self-test implementations
|
||
* @returns void
|
||
*******************************************************************************/
|
||
static void test() {
|
||
std::vector<uint64_t> arr = {{1, 3, 3, 2, 3, 2}};
|
||
uint64_t n = arr.size();
|
||
bool expected_result = true;
|
||
bool derived_result = dp::partitionProblem::findPartiion(arr, n);
|
||
std::cout << "1st test: ";
|
||
assert(expected_result == derived_result);
|
||
std::cout << "Passed!" << std::endl;
|
||
}
|
||
|
||
/*******************************************************************************
|
||
* @brief Main function
|
||
* @returns 0 on exit
|
||
*******************************************************************************/
|
||
int main() {
|
||
test(); // run self-test implementations
|
||
return 0;
|
||
}
|