TheAlgorithms-C-Plus-Plus/dynamic_programming/longest_palindromic_subsequence.cpp

101 lines
3.1 KiB
C++

/**
* @file
* @brief Program to find the [Longest Palindormic
* Subsequence](https://www.geeksforgeeks.org/longest-palindromic-subsequence-dp-12/) of a string
*
* @details
* [Palindrome](https://en.wikipedia.org/wiki/Palindrome) string sequence of
* characters which reads the same backward as forward
* [Subsequence](https://en.wikipedia.org/wiki/Subsequence) is a sequence that
* can be derived from another sequence by deleting some or no elements without
* changing the order of the remaining elements.
* @author [Anjali Jha](https://github.com/anjali1903)
*/
#include <cassert> /// for assert
#include <string> /// for std::string
#include <vector> /// for std::vector
/**
* @namespace
* @brief Dynamic Programming algorithms
*/
namespace dynamic_programming {
/**
* @brief Function that returns the longest palindromic
* subsequence of a string
* @param a string whose longest palindromic subsequence is to be found
* @returns longest palindromic subsequence of the string
*/
std::string lps(const std::string& a) {
const auto b = std::string(a.rbegin(), a.rend());
const auto m = a.length();
using ind_type = std::string::size_type;
std::vector<std::vector<ind_type> > res(m + 1,
std::vector<ind_type>(m + 1));
// Finding the length of the longest
// palindromic subsequence and storing
// in a 2D array in bottoms-up manner
for (ind_type i = 0; i <= m; i++) {
for (ind_type j = 0; j <= m; j++) {
if (i == 0 || j == 0) {
res[i][j] = 0;
} else if (a[i - 1] == b[j - 1]) {
res[i][j] = res[i - 1][j - 1] + 1;
} else {
res[i][j] = std::max(res[i - 1][j], res[i][j - 1]);
}
}
}
// Length of longest palindromic subsequence
auto idx = res[m][m];
// Creating string of index+1 length
std::string ans(idx, '\0');
ind_type i = m, j = m;
// starting from right-most bottom-most corner
// and storing them one by one in ans
while (i > 0 && j > 0) {
// if current characters in a and b are same
// then it is a part of the ans
if (a[i - 1] == b[j - 1]) {
ans[idx - 1] = a[i - 1];
i--;
j--;
idx--;
}
// If they are not same, find the larger of the
// two and move in that direction
else if (res[i - 1][j] > res[i][j - 1]) {
i--;
} else {
j--;
}
}
return ans;
}
} // namespace dynamic_programming
/**
* @brief Self-test implementations
* @returns void
*/
static void test() {
assert(dynamic_programming::lps("radar") == "radar");
assert(dynamic_programming::lps("abbcbaa") == "abcba");
assert(dynamic_programming::lps("bbbab") == "bbbb");
assert(dynamic_programming::lps("") == "");
}
/**
* @brief Main Function
* @returns 0 on exit
*/
int main() {
test(); // execute the tests
return 0;
}