mirror of
https://hub.njuu.cf/TheAlgorithms/C-Plus-Plus.git
synced 2023-10-11 13:05:55 +08:00
148 lines
4.1 KiB
C++
148 lines
4.1 KiB
C++
/**
|
|
* @file
|
|
* @brief The implementation of [Hamilton's
|
|
* cycle](https://en.wikipedia.org/wiki/Hamiltonian_path) dynamic solution for
|
|
* vertices number less than 20.
|
|
* @details
|
|
* I use \f$2^n\times n\f$ matrix and for every \f$[i, j]\f$ (\f$i < 2^n\f$ and
|
|
* \f$j < n\f$) in the matrix I store `true` if it is possible to get to all
|
|
* vertices on which position in `i`'s binary representation is `1` so as
|
|
* \f$j\f$ would be the last one.
|
|
*
|
|
* In the the end if any cell in \f$(2^n - 1)^{\mbox{th}}\f$ row is `true` there
|
|
* exists hamiltonian cycle.
|
|
*
|
|
* @author [vakhokoto](https://github.com/vakhokoto)
|
|
* @author [Krishna Vedala](https://github.com/kvedala)
|
|
*/
|
|
#include <cassert>
|
|
#include <iostream>
|
|
#include <vector>
|
|
|
|
/**
|
|
* The function determines if there is a hamilton's cycle in the graph
|
|
*
|
|
* @param routes nxn boolean matrix of \f$[i, j]\f$ where \f$[i, j]\f$ is `true`
|
|
* if there is a road from \f$i\f$ to \f$j\f$
|
|
* @return `true` if there is Hamiltonian cycle in the graph
|
|
* @return `false` if there is no Hamiltonian cycle in the graph
|
|
*/
|
|
bool hamilton_cycle(const std::vector<std::vector<bool>> &routes) {
|
|
const size_t n = routes.size();
|
|
// height of dp array which is 2^n
|
|
const size_t height = 1 << n;
|
|
std::vector<std::vector<bool>> dp(height, std::vector<bool>(n, false));
|
|
|
|
// to fill in the [2^i, i] cells with true
|
|
for (size_t i = 0; i < n; ++i) {
|
|
dp[1 << i][i] = true;
|
|
}
|
|
for (size_t i = 1; i < height; i++) {
|
|
std::vector<size_t> zeros, ones;
|
|
// finding positions with 1s and 0s and separate them
|
|
for (size_t pos = 0; pos < n; ++pos) {
|
|
if ((1 << pos) & i) {
|
|
ones.push_back(pos);
|
|
} else {
|
|
zeros.push_back(pos);
|
|
}
|
|
}
|
|
|
|
for (auto &o : ones) {
|
|
if (!dp[i][o]) {
|
|
continue;
|
|
}
|
|
|
|
for (auto &z : zeros) {
|
|
if (!routes[o][z]) {
|
|
continue;
|
|
}
|
|
dp[i + (1 << z)][z] = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
bool is_cycle = false;
|
|
for (size_t i = 0; i < n; i++) {
|
|
is_cycle |= dp[height - 1][i];
|
|
if (is_cycle) { // if true, all subsequent loop will be true. hence
|
|
// break
|
|
break;
|
|
}
|
|
}
|
|
return is_cycle;
|
|
}
|
|
|
|
/**
|
|
* this test is testing if ::hamilton_cycle returns `true` for
|
|
* graph: `1 -> 2 -> 3 -> 4`
|
|
* @return None
|
|
*/
|
|
static void test1() {
|
|
std::vector<std::vector<bool>> arr{
|
|
std::vector<bool>({true, true, false, false}),
|
|
std::vector<bool>({false, true, true, false}),
|
|
std::vector<bool>({false, false, true, true}),
|
|
std::vector<bool>({false, false, false, true})};
|
|
|
|
bool ans = hamilton_cycle(arr);
|
|
std::cout << "Test 1... ";
|
|
assert(ans);
|
|
std::cout << "passed\n";
|
|
}
|
|
|
|
/**
|
|
* this test is testing if ::hamilton_cycle returns `false` for
|
|
* \n graph:<pre>
|
|
* 1 -> 2 -> 3
|
|
* |
|
|
* V
|
|
* 4</pre>
|
|
* @return None
|
|
*/
|
|
static void test2() {
|
|
std::vector<std::vector<bool>> arr{
|
|
std::vector<bool>({true, true, false, false}),
|
|
std::vector<bool>({false, true, true, true}),
|
|
std::vector<bool>({false, false, true, false}),
|
|
std::vector<bool>({false, false, false, true})};
|
|
|
|
bool ans = hamilton_cycle(arr);
|
|
|
|
std::cout << "Test 2... ";
|
|
assert(!ans); // not a cycle
|
|
std::cout << "passed\n";
|
|
}
|
|
|
|
/**
|
|
* this test is testing if ::hamilton_cycle returns `true` for
|
|
* clique with 4 vertices
|
|
* @return None
|
|
*/
|
|
static void test3() {
|
|
std::vector<std::vector<bool>> arr{
|
|
std::vector<bool>({true, true, true, true}),
|
|
std::vector<bool>({true, true, true, true}),
|
|
std::vector<bool>({true, true, true, true}),
|
|
std::vector<bool>({true, true, true, true})};
|
|
|
|
bool ans = hamilton_cycle(arr);
|
|
|
|
std::cout << "Test 3... ";
|
|
assert(ans);
|
|
std::cout << "passed\n";
|
|
}
|
|
|
|
/**
|
|
* Main function
|
|
*
|
|
* @param argc commandline argument count (ignored)
|
|
* @param argv commandline array of arguments (ignored)
|
|
*/
|
|
int main(int argc, char **argv) {
|
|
test1();
|
|
test2();
|
|
test3();
|
|
return 0;
|
|
}
|