mirror of
https://hub.njuu.cf/TheAlgorithms/C-Plus-Plus.git
synced 2023-10-11 13:05:55 +08:00
134 lines
3.6 KiB
C++
134 lines
3.6 KiB
C++
/**
|
|
* @file median_search.cpp
|
|
* @brief Implementation of [Median search](https://en.wikipedia.org/wiki/Median_of_medians) algorithm.
|
|
* @cases from [here](https://brilliant.org/wiki/median-finding-algorithm/)
|
|
*
|
|
* @details
|
|
* Given an array A[1,...,n] of n numbers and an index idx, idx, where 1≤idx≤ n, 1≤idx≤ n, find the i-th smallest element of A.
|
|
* median_of_medians(A, i):
|
|
* #divide A into sublists of len 5
|
|
* sublists = [A[j:j+5] for j in range(0, len(A), 5)]
|
|
* medians = [sorted(sublist)[len(sublist)/2] for sublist in sublists]
|
|
* if len(medians) <= 5:
|
|
* pivot = sorted(medians)[len(medians)/2]
|
|
* else:
|
|
* #the pivot is the median of the medians
|
|
* pivot = median_of_medians(medians, len(medians)/2)
|
|
* #partitioning step
|
|
* low = [j for j in A if j < pivot]
|
|
* high = [j for j in A if j > pivot]
|
|
* k = len(low)
|
|
* if i < k:
|
|
* return median_of_medians(low,i)
|
|
* elif i > k:
|
|
* return median_of_medians(high,i-k-1)
|
|
* else: #pivot = k
|
|
* return pivot
|
|
*
|
|
* \note this algorithm implements median search for only arrays which have distinct elements
|
|
*
|
|
* Here are some example lists you can use to see how the algorithm works
|
|
* A = [1,2,3,4,5,1000,8,9,99] (Contain Unique Elements)
|
|
* B = [1,2,3,4,5,6] (Contains Unique Elements)
|
|
* print median_of_medians(A, 0) #should be 1
|
|
* print median_of_medians(A,7) #should be 99
|
|
* print median_of_medians(B,4) #should be 5
|
|
*
|
|
* @author Unknown author
|
|
* @author [Sushil Kumar](https://github.com/Rp-sushil)
|
|
*/
|
|
|
|
#include <iostream>
|
|
#include <algorithm>
|
|
#include <vector>
|
|
|
|
/**
|
|
* @namespace search
|
|
* @brief Search algorithms
|
|
*/
|
|
namespace search {
|
|
/**
|
|
* @namespace median_search
|
|
* @brief Functions for [Median search](https://en.wikipedia.org/wiki/Median_search) algorithm
|
|
*/
|
|
namespace median_search {
|
|
/**
|
|
* This function search the element in an array for the given index.
|
|
* @param A array where numbers are saved
|
|
* @param idx current index in array
|
|
* @returns corresponding element which we want to search.
|
|
*/
|
|
int median_of_medians(const std::vector<int>& A, const int& idx) {
|
|
int pivot = 0; // initialized with zero
|
|
std::vector<int> a(A.begin(), A.end());
|
|
std::vector<int> m;
|
|
int r = a.size();
|
|
for(int i = 0; i < r; i += 5){
|
|
std::sort(a.begin() + i, a.begin() + std::min(r, i + 5));
|
|
int mid = (i + std::min(r, i + 5)) / 2;
|
|
m.push_back(a[mid]);
|
|
}
|
|
int sz = int(m.size());
|
|
if(sz <= 5){
|
|
std::sort(m.begin(), m.end());
|
|
pivot = m[(sz- 1) / 2];
|
|
}
|
|
else{
|
|
pivot = median_of_medians(m, idx);
|
|
}
|
|
std::vector<int> low;
|
|
std::vector<int> high;
|
|
for(int i = 0; i < r; i++){
|
|
if(a[i] < pivot){
|
|
low.push_back(a[i]);
|
|
}
|
|
else if(a[i] > pivot){
|
|
high.push_back(a[i]);
|
|
}
|
|
}
|
|
int k = int(low.size());
|
|
if(idx < k){
|
|
return median_of_medians(low, idx);
|
|
}
|
|
else if(idx > k){
|
|
return median_of_medians(high, idx-k-1);
|
|
}
|
|
else{
|
|
return pivot;
|
|
}
|
|
}
|
|
} // namespace median_search
|
|
} // namespace search
|
|
|
|
/**
|
|
* Main function
|
|
*/
|
|
int main()
|
|
{
|
|
int n = 0;
|
|
std::cout << "Enter Size of Array: ";
|
|
std::cin >> n;
|
|
std::vector<int> a(n);
|
|
std::cout << "Enter Array: ";
|
|
for(int i = 0; i < n; i++){
|
|
std::cin >> a[i];
|
|
}
|
|
std::cout << "Median: "; // Median defination: https://en.wikipedia.org/wiki/Median
|
|
int x = search::median_search::median_of_medians(a, (n - 1) / 2);
|
|
if(n % 2 == 0){
|
|
int y = search::median_search::median_of_medians(a, n / 2);
|
|
std::cout << (float(x) + float(y))/2.0;
|
|
}
|
|
else{
|
|
std::cout << x;
|
|
}
|
|
std::cout << "\nTo find i-th smallest element ";
|
|
std::cout << "\nEnter i: ";
|
|
int idx = 0;
|
|
std::cin >> idx;
|
|
idx--;
|
|
std::cout << idx + 1<< "-th smallest element: " << search::median_search::median_of_medians(a, idx) << '\n';
|
|
return 0;
|
|
}
|
|
|