TheAlgorithms-C-Plus-Plus/machine_learning/iris.csv
Deep Raval 4a34bec125
feat: Add Neural Network (Multilayer Perceptron) (#1025)
* Completed NN

* Made changes

* Added return in identity function

* Added <random> and fixed namespace naming

* clang-tidy changes

* Update machine_learning/neural_network.cpp

Co-authored-by: David Leal <halfpacho@gmail.com>

* Update machine_learning/neural_network.cpp

Co-authored-by: David Leal <halfpacho@gmail.com>

* Update machine_learning/neural_network.cpp

Co-authored-by: David Leal <halfpacho@gmail.com>

* Update machine_learning/vector_ops.hpp

Co-authored-by: David Leal <halfpacho@gmail.com>

* Update machine_learning/vector_ops.hpp

Co-authored-by: David Leal <halfpacho@gmail.com>

* Update machine_learning/neural_network.cpp

Co-authored-by: David Leal <halfpacho@gmail.com>

* Update machine_learning/neural_network.cpp

Co-authored-by: David Leal <halfpacho@gmail.com>

* added std::cerr and changed argmax's namespace

* Done suggested changes

* Fixed a comment

* clang-tidy fixes

Co-authored-by: David Leal <halfpacho@gmail.com>
2020-08-19 15:25:32 -04:00

153 lines
2.6 KiB
Plaintext

https://archive.ics.uci.edu/ml/datasets/iris
sepal length in cm,sepal width in cm,petal length in cm,petal width in cm
5.1,3.5,1.4,.2,0
4.9,3,1.4,.2,0
4.7,3.2,1.3,.2,0
4.6,3.1,1.5,.2,0
5,3.6,1.4,.2,0
5.4,3.9,1.7,.4,0
4.6,3.4,1.4,.3,0
5,3.4,1.5,.2,0
4.4,2.9,1.4,.2,0
4.9,3.1,1.5,.1,0
5.4,3.7,1.5,.2,0
4.8,3.4,1.6,.2,0
4.8,3,1.4,.1,0
4.3,3,1.1,.1,0
5.8,4,1.2,.2,0
5.7,4.4,1.5,.4,0
5.4,3.9,1.3,.4,0
5.1,3.5,1.4,.3,0
5.7,3.8,1.7,.3,0
5.1,3.8,1.5,.3,0
5.4,3.4,1.7,.2,0
5.1,3.7,1.5,.4,0
4.6,3.6,1,.2,0
5.1,3.3,1.7,.5,0
4.8,3.4,1.9,.2,0
5,3,1.6,.2,0
5,3.4,1.6,.4,0
5.2,3.5,1.5,.2,0
5.2,3.4,1.4,.2,0
4.7,3.2,1.6,.2,0
4.8,3.1,1.6,.2,0
5.4,3.4,1.5,.4,0
5.2,4.1,1.5,.1,0
5.5,4.2,1.4,.2,0
4.9,3.1,1.5,.2,0
5,3.2,1.2,.2,0
5.5,3.5,1.3,.2,0
4.9,3.6,1.4,.1,0
4.4,3,1.3,.2,0
5.1,3.4,1.5,.2,0
5,3.5,1.3,.3,0
4.5,2.3,1.3,.3,0
4.4,3.2,1.3,.2,0
5,3.5,1.6,.6,0
5.1,3.8,1.9,.4,0
4.8,3,1.4,.3,0
5.1,3.8,1.6,.2,0
4.6,3.2,1.4,.2,0
5.3,3.7,1.5,.2,0
5,3.3,1.4,.2,0
7,3.2,4.7,1.4,1
6.4,3.2,4.5,1.5,1
6.9,3.1,4.9,1.5,1
5.5,2.3,4,1.3,1
6.5,2.8,4.6,1.5,1
5.7,2.8,4.5,1.3,1
6.3,3.3,4.7,1.6,1
4.9,2.4,3.3,1,1
6.6,2.9,4.6,1.3,1
5.2,2.7,3.9,1.4,1
5,2,3.5,1,1
5.9,3,4.2,1.5,1
6,2.2,4,1,1
6.1,2.9,4.7,1.4,1
5.6,2.9,3.6,1.3,1
6.7,3.1,4.4,1.4,1
5.6,3,4.5,1.5,1
5.8,2.7,4.1,1,1
6.2,2.2,4.5,1.5,1
5.6,2.5,3.9,1.1,1
5.9,3.2,4.8,1.8,1
6.1,2.8,4,1.3,1
6.3,2.5,4.9,1.5,1
6.1,2.8,4.7,1.2,1
6.4,2.9,4.3,1.3,1
6.6,3,4.4,1.4,1
6.8,2.8,4.8,1.4,1
6.7,3,5,1.7,1
6,2.9,4.5,1.5,1
5.7,2.6,3.5,1,1
5.5,2.4,3.8,1.1,1
5.5,2.4,3.7,1,1
5.8,2.7,3.9,1.2,1
6,2.7,5.1,1.6,1
5.4,3,4.5,1.5,1
6,3.4,4.5,1.6,1
6.7,3.1,4.7,1.5,1
6.3,2.3,4.4,1.3,1
5.6,3,4.1,1.3,1
5.5,2.5,4,1.3,1
5.5,2.6,4.4,1.2,1
6.1,3,4.6,1.4,1
5.8,2.6,4,1.2,1
5,2.3,3.3,1,1
5.6,2.7,4.2,1.3,1
5.7,3,4.2,1.2,1
5.7,2.9,4.2,1.3,1
6.2,2.9,4.3,1.3,1
5.1,2.5,3,1.1,1
5.7,2.8,4.1,1.3,1
6.3,3.3,6,2.5,2
5.8,2.7,5.1,1.9,2
7.1,3,5.9,2.1,2
6.3,2.9,5.6,1.8,2
6.5,3,5.8,2.2,2
7.6,3,6.6,2.1,2
4.9,2.5,4.5,1.7,2
7.3,2.9,6.3,1.8,2
6.7,2.5,5.8,1.8,2
7.2,3.6,6.1,2.5,2
6.5,3.2,5.1,2,2
6.4,2.7,5.3,1.9,2
6.8,3,5.5,2.1,2
5.7,2.5,5,2,2
5.8,2.8,5.1,2.4,2
6.4,3.2,5.3,2.3,2
6.5,3,5.5,1.8,2
7.7,3.8,6.7,2.2,2
7.7,2.6,6.9,2.3,2
6,2.2,5,1.5,2
6.9,3.2,5.7,2.3,2
5.6,2.8,4.9,2,2
7.7,2.8,6.7,2,2
6.3,2.7,4.9,1.8,2
6.7,3.3,5.7,2.1,2
7.2,3.2,6,1.8,2
6.2,2.8,4.8,1.8,2
6.1,3,4.9,1.8,2
6.4,2.8,5.6,2.1,2
7.2,3,5.8,1.6,2
7.4,2.8,6.1,1.9,2
7.9,3.8,6.4,2,2
6.4,2.8,5.6,2.2,2
6.3,2.8,5.1,1.5,2
6.1,2.6,5.6,1.4,2
7.7,3,6.1,2.3,2
6.3,3.4,5.6,2.4,2
6.4,3.1,5.5,1.8,2
6,3,4.8,1.8,2
6.9,3.1,5.4,2.1,2
6.7,3.1,5.6,2.4,2
6.9,3.1,5.1,2.3,2
5.8,2.7,5.1,1.9,2
6.8,3.2,5.9,2.3,2
6.7,3.3,5.7,2.5,2
6.7,3,5.2,2.3,2
6.3,2.5,5,1.9,2
6.5,3,5.2,2,2
6.2,3.4,5.4,2.3,2
5.9,3,5.1,1.8,2