TheAlgorithms-C-Plus-Plus/dynamic_programming/Bellman-Ford.cpp
Christian Clauss 5c241487aa
rename Dynamic Programming -> dynamic_programming (#645)
* rename Dynamic Programming -> dynamic_programming

* rename dynamic-programming -> dynamic_programming
2019-11-28 13:29:01 +01:00

129 lines
2.5 KiB
C++

#include <iostream>
#include <limits.h>
using namespace std;
//Wrapper class for storing an edge
class Edge
{
public:
int src, dst, weight;
};
//Wrapper class for storing a graph
class Graph
{
public:
int vertexNum, edgeNum;
Edge *edges;
//Constructs a graph with V vertices and E edges
Graph(int V, int E)
{
this->vertexNum = V;
this->edgeNum = E;
this->edges = (Edge *)malloc(E * sizeof(Edge));
}
//Adds the given edge to the graph
void addEdge(int src, int dst, int weight)
{
static int edgeInd = 0;
if (edgeInd < this->edgeNum)
{
Edge newEdge;
newEdge.src = src;
newEdge.dst = dst;
newEdge.weight = weight;
this->edges[edgeInd++] = newEdge;
}
}
};
//Utility function to print distances
void print(int dist[], int V)
{
cout << "\nVertex Distance" << endl;
for (int i = 0; i < V; i++)
{
if (dist[i] != INT_MAX)
cout << i << "\t" << dist[i] << endl;
else
cout << i << "\tINF" << endl;
}
}
//The main function that finds the shortest path from given source
//to all other vertices using Bellman-Ford.It also detects negative
//weight cycle
void BellmanFord(Graph graph, int src)
{
int V = graph.vertexNum;
int E = graph.edgeNum;
int dist[V];
//Initialize distances array as INF for all except source
//Intialize source as zero
for (int i = 0; i < V; i++)
dist[i] = INT_MAX;
dist[src] = 0;
//Calculate shortest path distance from source to all edges
//A path can contain maximum (|V|-1) edges
for (int i = 0; i <= V - 1; i++)
for (int j = 0; j < E; j++)
{
int u = graph.edges[j].src;
int v = graph.edges[j].dst;
int w = graph.edges[j].weight;
if (dist[u] != INT_MAX && dist[u] + w < dist[v])
dist[v] = dist[u] + w;
}
//Iterate inner loop once more to check for negative cycle
for (int j = 0; j < E; j++)
{
int u = graph.edges[j].src;
int v = graph.edges[j].dst;
int w = graph.edges[j].weight;
if (dist[u] != INT_MAX && dist[u] + w < dist[v])
{
cout << "Graph contains negative weight cycle. Hence, shortest distance not guaranteed." << endl;
return;
}
}
print(dist, V);
return;
}
//Driver Function
int main()
{
int V, E, gsrc;
int src, dst, weight;
cout << "Enter number of vertices: ";
cin >> V;
cout << "Enter number of edges: ";
cin >> E;
Graph G(V, E);
for (int i = 0; i < E; i++)
{
cout << "\nEdge " << i + 1 << "\nEnter source: ";
cin >> src;
cout << "Enter destination: ";
cin >> dst;
cout << "Enter weight: ";
cin >> weight;
G.addEdge(src, dst, weight);
}
cout << "\nEnter source: ";
cin >> gsrc;
BellmanFord(G, gsrc);
return 0;
}