TheAlgorithms-C-Plus-Plus/math/n_choose_r.cpp
Kaustubh Damania 67e26cfbae
feat: Add ncr mod p code (#1325)
* feat: Add ncr mod p code (#1323)

* Update math/ncr_modulo_p.cpp

Co-authored-by: David Leal <halfpacho@gmail.com>

* Added all functions inside a class + added more asserts

* updating DIRECTORY.md

* clang-format and clang-tidy fixes for f6df24a5

* Replace int64_t to uint64_t + add namespace + detailed documentation

* clang-format and clang-tidy fixes for e09a0579

* Add extra namespace + add const& in function arguments

* clang-format and clang-tidy fixes for 8111f881

* Update ncr_modulo_p.cpp

* clang-format and clang-tidy fixes for 2ad2f721

* Update math/ncr_modulo_p.cpp

Co-authored-by: David Leal <halfpacho@gmail.com>

* Update math/ncr_modulo_p.cpp

Co-authored-by: David Leal <halfpacho@gmail.com>

* Update math/ncr_modulo_p.cpp

Co-authored-by: David Leal <halfpacho@gmail.com>

* clang-format and clang-tidy fixes for 5b69ba5c

* updating DIRECTORY.md

* clang-format and clang-tidy fixes for a8401d4b

Co-authored-by: David Leal <halfpacho@gmail.com>
Co-authored-by: github-actions <${GITHUB_ACTOR}@users.noreply.github.com>
2020-11-22 23:05:01 +05:30

84 lines
2.4 KiB
C++

/**
* @file
* @brief [Combinations](https://en.wikipedia.org/wiki/Combination) n choose r
* function implementation
* @details
* A very basic and efficient method of calculating
* choosing r from n different choices.
* \f$ \binom{n}{r} = \frac{n!}{r! (n-r)!} \f$
*
* @author [Tajmeet Singh](https://github.com/tjgurwara99)
*/
#include <cassert> /// for assert
#include <iostream> /// for io operations
/**
* @namespace math
* @brief Mathematical algorithms
*/
namespace math {
/**
* @brief This is the function implementation of \f$ \binom{n}{r} \f$
* @details
* We are calculating the ans with iterations
* instead of calculating three different factorials.
* Also, we are using the fact that
* \f$ \frac{n!}{r! (n-r)!} = \frac{(n - r + 1) \times \cdots \times n}{1 \times
* \cdots \times r} \f$
* @tparam T Only for integer types such as long, int_64 etc
* @param n \f$ n \f$ in \f$ \binom{n}{r} \f$
* @param r \f$ r \f$ in \f$ \binom{n}{r} \f$
* @returns ans \f$ \binom{n}{r} \f$
*/
template <class T>
T n_choose_r(T n, T r) {
if (r > n / 2) {
r = n - r; // Because of the fact that nCr(n, r) == nCr(n, n - r)
}
T ans = 1;
for (int i = 1; i <= r; i++) {
ans *= n - r + i;
ans /= i;
}
return ans;
}
} // namespace math
/**
* @brief Test implementations
* @returns void
*/
static void test() {
// First test on 5 choose 2
uint8_t t = math::n_choose_r(5, 2);
assert(((void)"10 is the answer but function says otherwise.\n", t == 10));
std::cout << "First test passes." << std::endl;
// Second test on 5 choose 3
t = math::n_choose_r(5, 3);
assert(
((void)"10 is the answer but the function says otherwise.\n", t == 10));
std::cout << "Second test passes." << std::endl;
// Third test on 3 choose 2
t = math::n_choose_r(3, 2);
assert(
((void)"3 is the answer but the function says otherwise.\n", t == 3));
std::cout << "Third test passes." << std::endl;
// Fourth test on 10 choose 4
t = math::n_choose_r(10, 4);
assert(((void)"210 is the answer but the function says otherwise.\n",
t == 210));
std::cout << "Fourth test passes." << std::endl;
}
/**
* @brief Main function
* @param argc commandline argument count (ignored)
* @param argv commandline array of arguments (ignored)
* @returns 0 on exit
*/
int main(int argc, char *argv[]) {
test(); // executing tests
return 0;
}