TheAlgorithms-C-Plus-Plus/math/fast_power.cpp
Krishna Vedala 05ec7bed72
improved documentation
(cherry picked from commit 139964d325)
2020-05-26 10:16:37 -04:00

84 lines
2.2 KiB
C++

/**
* @file
Program that computes \f$a^b\f$ in \f$O(logN)\f$ time.
It is based on formula that:
1. if \f$b\f$ is even: \f$a^b = a^\frac{b}{2} \cdot a^\frac{b}{2} =
{a^\frac{b}{2}}^2\f$
2. if \f$b\f$ is odd: \f$a^b = a^\frac{b-1}{2} \cdot
a^\frac{b-1}{2} \cdot a = {a^\frac{b-1}{2}}^2 \cdot a\f$
We can compute \f$a^b\f$
recursively using above algorithm.
*/
#include <cassert>
#include <cmath>
#include <cstdint>
#include <cstdlib>
#include <ctime>
#include <iostream>
/**
* algorithm implementation for \f$a^b\f$
*/
double fast_power_recursive(int64_t a, int64_t b) {
// negative power. a^b = 1 / (a^-b)
if (b < 0) return 1.0 / fast_power_recursive(a, -b);
if (b == 0) return 1;
int64_t bottom = fast_power_recursive(a, b >> 1);
// Since it is integer division b/2 = (b-1)/2 where b is odd.
// Therefore, case2 is easily solved by integer division.
int64_t result;
if ((b & 1) == 0) // case1
result = bottom * bottom;
else // case2
result = bottom * bottom * a;
return result;
}
/**
Same algorithm with little different formula.
It still calculates in O(logN)
*/
double fast_power_linear(int64_t a, int64_t b) {
// negative power. a^b = 1 / (a^-b)
if (b < 0) return 1.0 / fast_power_linear(a, -b);
double result = 1;
while (b) {
if (b & 1) result = result * a;
a = a * a;
b = b >> 1;
}
return result;
}
int main() {
std::srand(std::time(nullptr));
std::ios_base::sync_with_stdio(false);
std::cout << "Testing..." << std::endl;
for (int i = 0; i < 20; i++) {
int a = std::rand() % 20 - 10;
int b = std::rand() % 20 - 10;
std::cout << std::endl << "Calculating " << a << "^" << b << std::endl;
assert(fast_power_recursive(a, b) == std::pow(a, b));
assert(fast_power_linear(a, b) == std::pow(a, b));
std::cout << "------ " << a << "^" << b << " = "
<< fast_power_recursive(a, b) << std::endl;
}
int64_t a, b;
std::cin >> a >> b;
std::cout << a << "^" << b << " = " << fast_power_recursive(a, b)
<< std::endl;
std::cout << a << "^" << b << " = " << fast_power_linear(a, b) << std::endl;
return 0;
}