TheAlgorithms-C-Plus-Plus/backtracking/n_queens_all_solution_optimised.cpp
David Leal 4e3abd4601
[feat/fix/docs]: Improvements in the backtracking folder (#1553)
* [feat/fix/docs]: Improvements in the...

...`backtracking` folder, and minor fixes in the `others/iterative_tree_traversals.cpp` and the `math/check_prime.cpp` files.

* clang-format and clang-tidy fixes for 9cc3951d

Co-authored-by: github-actions <${GITHUB_ACTOR}@users.noreply.github.com>
Co-authored-by: Abhinn Mishra <49574460+mishraabhinn@users.noreply.github.com>
2021-10-29 13:05:46 -05:00

132 lines
3.4 KiB
C++

/**
* @file
* @brief [N queens](https://en.wikipedia.org/wiki/Eight_queens_puzzle) all
* optimized
*
* @author [Sombit Bose](https://github.com/deadshotsb)
* @author [David Leal](https://github.com/Panquesito7)
*/
#include <array>
#include <iostream>
/**
* @namespace backtracking
* @brief Backtracking algorithms
*/
namespace backtracking {
/**
* @namespace n_queens_optimized
* @brief Functions for [Eight
* Queens](https://en.wikipedia.org/wiki/Eight_queens_puzzle) puzzle optimized.
*/
namespace n_queens_optimized {
/**
* Utility function to print matrix
* @tparam n number of matrix size
* @param board matrix where numbers are saved
*/
template <size_t n>
void PrintSol(const std::array<std::array<int, n>, n> &board) {
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
std::cout << board[i][j] << " ";
}
std::cout << std::endl;
}
std::cout << std::endl;
if (n % 2 == 0 || (n % 2 == 1 && board[n / 2 + 1][0] != 1)) {
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
std::cout << board[j][i] << " ";
}
std::cout << std::endl;
}
std::cout << std::endl;
}
}
/**
* Check if a queen can be placed on matrix
* @tparam n number of matrix size
* @param board matrix where numbers are saved
* @param row current index in rows
* @param col current index in columns
* @returns `true` if queen can be placed on matrix
* @returns `false` if queen can't be placed on matrix
*/
template <size_t n>
bool CanIMove(const std::array<std::array<int, n>, n> &board, int row,
int col) {
/// check in the row
for (int i = 0; i <= col; i++) {
if (board[row][i] == 1) {
return false;
}
}
/// check the first diagonal
for (int i = row, j = col; i >= 0 && j >= 0; i--, j--) {
if (board[i][j] == 1) {
return false;
}
}
/// check the second diagonal
for (int i = row, j = col; i <= n - 1 && j >= 0; i++, j--) {
if (board[i][j] == 1) {
return false;
}
}
return true;
}
/**
* Solve n queens problem
* @tparam n number of matrix size
* @param board matrix where numbers are saved
* @param col current index in columns
*/
template <size_t n>
void NQueenSol(std::array<std::array<int, n>, n> board, int col) {
if (col >= n) {
PrintSol<n>(board);
return;
}
for (int i = 0; i < n; i++) {
if (CanIMove<n>(board, i, col)) {
board[i][col] = 1;
NQueenSol<n>(board, col + 1);
board[i][col] = 0;
}
}
}
} // namespace n_queens_optimized
} // namespace backtracking
/**
* @brief Main function
* @returns 0 on exit
*/
int main() {
const int n = 4;
std::array<std::array<int, n>, n> board{};
if (n % 2 == 0) {
for (int i = 0; i <= n / 2 - 1; i++) {
if (backtracking::n_queens_optimized::CanIMove(board, i, 0)) {
board[i][0] = 1;
backtracking::n_queens_optimized::NQueenSol(board, 1);
board[i][0] = 0;
}
}
} else {
for (int i = 0; i <= n / 2; i++) {
if (backtracking::n_queens_optimized::CanIMove(board, i, 0)) {
board[i][0] = 1;
backtracking::n_queens_optimized::NQueenSol(board, 1);
board[i][0] = 0;
}
}
}
return 0;
}