mirror of
https://hub.njuu.cf/TheAlgorithms/C-Plus-Plus.git
synced 2023-10-11 13:05:55 +08:00
5a7120165e
Co-authored-by: saurav <sauravUppoor@users.noreply.github.com>
151 lines
5.1 KiB
C++
151 lines
5.1 KiB
C++
/**
|
||
* @file
|
||
* @brief [Sudoku Solver](https://en.wikipedia.org/wiki/Sudoku) algorithm.
|
||
*
|
||
* @details
|
||
* Sudoku (数独, sūdoku, digit-single) (/suːˈdoʊkuː/, /-ˈdɒk-/, /sə-/, originally called
|
||
* Number Place) is a logic-based, combinatorial number-placement puzzle.
|
||
* In classic sudoku, the objective is to fill a 9×9 grid with digits so that each column,
|
||
* each row, and each of the nine 3×3 subgrids that compose the grid (also called "boxes", "blocks", or "regions")
|
||
* contain all of the digits from 1 to 9. The puzzle setter provides a
|
||
* partially completed grid, which for a well-posed puzzle has a single solution.
|
||
*
|
||
* @author [DarthCoder3200](https://github.com/DarthCoder3200)
|
||
* @author [David Leal](https://github.com/Panquesito7)
|
||
*/
|
||
#include <iostream>
|
||
#include <array>
|
||
|
||
/**
|
||
* @namespace backtracking
|
||
* @brief Backtracking algorithms
|
||
*/
|
||
namespace backtracking {
|
||
/**
|
||
* Checks if it's possible to place a number 'no'
|
||
* @tparam V number of vertices in the array
|
||
* @param mat matrix where numbers are saved
|
||
* @param i current index in rows
|
||
* @param j current index in columns
|
||
* @param no number to be added in matrix
|
||
* @param n number of times loop will run
|
||
* @returns `true` if 'mat' is different from 'no'
|
||
* @returns `false` if 'mat' equals to 'no'
|
||
*/
|
||
template <size_t V>
|
||
bool isPossible(const std::array <std::array <int, V>, V> &mat, int i, int j, int no, int n) {
|
||
/// 'no' shouldn't be present in either row i or column j
|
||
for (int x = 0; x < n; x++) {
|
||
if (mat[x][j] == no || mat[i][x] == no) {
|
||
return false;
|
||
}
|
||
}
|
||
|
||
/// 'no' shouldn't be present in the 3*3 subgrid
|
||
int sx = (i / 3) * 3;
|
||
int sy = (j / 3) * 3;
|
||
|
||
for (int x = sx; x < sx + 3; x++) {
|
||
for (int y = sy; y < sy + 3; y++) {
|
||
if (mat[x][y] == no) {
|
||
return false;
|
||
}
|
||
}
|
||
}
|
||
|
||
return true;
|
||
}
|
||
/**
|
||
* Utility function to print matrix
|
||
* @tparam V number of vertices in array
|
||
* @param mat matrix where numbers are saved
|
||
* @param n number of times loop will run
|
||
* @return void
|
||
*/
|
||
template <size_t V>
|
||
void printMat(const std::array <std::array <int, V>, V> &mat, int n) {
|
||
for (int i = 0; i < n; i++) {
|
||
for (int j = 0; j < n; j++) {
|
||
std::cout << mat[i][j] << " ";
|
||
if ((j + 1) % 3 == 0) {
|
||
std::cout << '\t';
|
||
}
|
||
}
|
||
if ((i + 1) % 3 == 0) {
|
||
std::cout << std::endl;
|
||
}
|
||
std::cout << std::endl;
|
||
}
|
||
}
|
||
|
||
/**
|
||
* Sudoku algorithm
|
||
* @tparam V number of vertices in array
|
||
* @param mat matrix where numbers are saved
|
||
* @param i current index in rows
|
||
* @param j current index in columns
|
||
* @returns `true` if 'no' was placed
|
||
* @returns `false` if 'no' was not placed
|
||
*/
|
||
template <size_t V>
|
||
bool solveSudoku(std::array <std::array <int, V>, V> &mat, int i, int j) {
|
||
/// Base Case
|
||
if (i == 9) {
|
||
/// Solved for 9 rows already
|
||
backtracking::printMat<V>(mat, 9);
|
||
return true;
|
||
}
|
||
|
||
/// Crossed the last Cell in the row
|
||
if (j == 9) {
|
||
return backtracking::solveSudoku<V>(mat, i + 1, 0);
|
||
}
|
||
|
||
/// Blue Cell - Skip
|
||
if (mat[i][j] != 0) {
|
||
return backtracking::solveSudoku<V>(mat, i, j + 1);
|
||
}
|
||
/// White Cell
|
||
/// Try to place every possible no
|
||
for (int no = 1; no <= 9; no++) {
|
||
if (backtracking::isPossible<V>(mat, i, j, no, 9)) {
|
||
/// Place the 'no' - assuming a solution will exist
|
||
mat[i][j] = no;
|
||
bool solution_found = backtracking::solveSudoku<V>(mat, i, j + 1);
|
||
if (solution_found) {
|
||
return true;
|
||
}
|
||
/// Couldn't find a solution
|
||
/// loop will place the next no.
|
||
}
|
||
}
|
||
/// Solution couldn't be found for any of the numbers provided
|
||
mat[i][j] = 0;
|
||
return false;
|
||
}
|
||
} // namespace backtracking
|
||
|
||
/**
|
||
* Main function
|
||
*/
|
||
int main() {
|
||
const int V = 9;
|
||
std::array <std::array <int, V>, V> mat = {
|
||
std::array <int, V> {5, 3, 0, 0, 7, 0, 0, 0, 0},
|
||
std::array <int, V> {6, 0, 0, 1, 9, 5, 0, 0, 0},
|
||
std::array <int, V> {0, 9, 8, 0, 0, 0, 0, 6, 0},
|
||
std::array <int, V> {8, 0, 0, 0, 6, 0, 0, 0, 3},
|
||
std::array <int, V> {4, 0, 0, 8, 0, 3, 0, 0, 1},
|
||
std::array <int, V> {7, 0, 0, 0, 2, 0, 0, 0, 6},
|
||
std::array <int, V> {0, 6, 0, 0, 0, 0, 2, 8, 0},
|
||
std::array <int, V> {0, 0, 0, 4, 1, 9, 0, 0, 5},
|
||
std::array <int, V> {0, 0, 0, 0, 8, 0, 0, 7, 9}
|
||
};
|
||
|
||
backtracking::printMat<V>(mat, 9);
|
||
std::cout << "Solution " << std::endl;
|
||
backtracking::solveSudoku<V>(mat, 0, 0);
|
||
|
||
return 0;
|
||
}
|