TheAlgorithms-C-Plus-Plus/computer_oriented_statistical_methods/false_position.cpp
2020-05-29 23:26:30 +00:00

84 lines
2.0 KiB
C++

/**
* \file
* \brief Solve the equation \f$f(x)=0\f$ using [false position
* method](https://en.wikipedia.org/wiki/Regula_falsi), also known as the Secant
* method
*
* Given two points \f$a\f$ and \f$b\f$ such that \f$f(a)<0\f$ and
* \f$f(b)>0\f$, then the \f$(i+1)^\text{th}\f$ approximation is given by: \f[
* x_{i+1} = \frac{a_i\cdot f(b_i) - b_i\cdot f(a_i)}{f(b_i) - f(a_i)}
* \f]
* For the next iteration, the interval is selected
* as: \f$[a,x]\f$ if \f$x>0\f$ or \f$[x,b]\f$ if \f$x<0\f$. The Process is
* continued till a close enough approximation is achieved.
*
* \see newton_raphson_method.cpp, bisection_method.cpp
*/
#include <cmath>
#include <cstdlib>
#include <iostream>
#include <limits>
#define EPSILON \
1e-6 // std::numeric_limits<double>::epsilon() ///< system accuracy limit
#define MAX_ITERATIONS 50000 ///< Maximum number of iterations to check
/** define \f$f(x)\f$ to find root for
*/
static double eq(double i)
{
return (std::pow(i, 3) - (4 * i) - 9); // origial equation
}
/** get the sign of any given number */
template <typename T>
int sgn(T val)
{
return (T(0) < val) - (val < T(0));
}
/** main function */
int main()
{
double a = -1, b = 1, x, z, m, n, c;
int i;
// loop to find initial intervals a, b
for (int i = 0; i < MAX_ITERATIONS; i++)
{
z = eq(a);
x = eq(b);
if (sgn(z) == sgn(x))
{ // same signs, increase interval
b++;
a--;
}
else
{ // if opposite signs, we got our interval
break;
}
}
std::cout << "\nFirst initial: " << a;
std::cout << "\nSecond initial: " << b;
for (i = 0; i < MAX_ITERATIONS; i++)
{
m = eq(a);
n = eq(b);
c = ((a * n) - (b * m)) / (n - m);
a = c;
z = eq(c);
if (std::abs(z) < EPSILON)
{ // stoping criteria
break;
}
}
std::cout << "\n\nRoot: " << c << "\t\tSteps: " << i << std::endl;
return 0;
}