mirror of
https://hub.njuu.cf/TheAlgorithms/C-Plus-Plus.git
synced 2023-10-11 13:05:55 +08:00
146 lines
3.2 KiB
C++
146 lines
3.2 KiB
C++
#include <limits.h>
|
|
#include <iostream>
|
|
|
|
using namespace std;
|
|
|
|
// Wrapper class for storing a graph
|
|
class Graph
|
|
{
|
|
public:
|
|
int vertexNum;
|
|
int **edges;
|
|
|
|
// Constructs a graph with V vertices and E edges
|
|
Graph(const int V)
|
|
{
|
|
// initializes the array edges.
|
|
this->edges = new int *[V];
|
|
for (int i = 0; i < V; i++)
|
|
{
|
|
edges[i] = new int[V];
|
|
}
|
|
|
|
// fills the array with zeros.
|
|
for (int i = 0; i < V; i++)
|
|
{
|
|
for (int j = 0; j < V; j++)
|
|
{
|
|
edges[i][j] = 0;
|
|
}
|
|
}
|
|
|
|
this->vertexNum = V;
|
|
}
|
|
|
|
// Adds the given edge to the graph
|
|
void addEdge(int src, int dst, int weight)
|
|
{
|
|
this->edges[src][dst] = weight;
|
|
}
|
|
};
|
|
// Utility function to find minimum distance vertex in mdist
|
|
int minDistance(int mdist[], bool vset[], int V)
|
|
{
|
|
int minVal = INT_MAX, minInd = 0;
|
|
for (int i = 0; i < V; i++)
|
|
{
|
|
if (!vset[i] && (mdist[i] < minVal))
|
|
{
|
|
minVal = mdist[i];
|
|
minInd = i;
|
|
}
|
|
}
|
|
|
|
return minInd;
|
|
}
|
|
|
|
// Utility function to print distances
|
|
void print(int dist[], int V)
|
|
{
|
|
cout << "\nVertex Distance" << endl;
|
|
for (int i = 0; i < V; i++)
|
|
{
|
|
if (dist[i] < INT_MAX)
|
|
cout << i << "\t" << dist[i] << endl;
|
|
else
|
|
cout << i << "\tINF" << endl;
|
|
}
|
|
}
|
|
|
|
// The main function that finds the shortest path from given source
|
|
// to all other vertices using Dijkstra's Algorithm.It doesn't work on negative
|
|
// weights
|
|
void Dijkstra(Graph graph, int src)
|
|
{
|
|
int V = graph.vertexNum;
|
|
int mdist[V]; // Stores updated distances to vertex
|
|
bool vset[V]; // vset[i] is true if the vertex i included
|
|
// in the shortest path tree
|
|
|
|
// Initialise mdist and vset. Set distance of source as zero
|
|
for (int i = 0; i < V; i++)
|
|
{
|
|
mdist[i] = INT_MAX;
|
|
vset[i] = false;
|
|
}
|
|
|
|
mdist[src] = 0;
|
|
|
|
// iterate to find shortest path
|
|
for (int count = 0; count < V - 1; count++)
|
|
{
|
|
int u = minDistance(mdist, vset, V);
|
|
|
|
vset[u] = true;
|
|
|
|
for (int v = 0; v < V; v++)
|
|
{
|
|
if (!vset[v] && graph.edges[u][v] &&
|
|
mdist[u] + graph.edges[u][v] < mdist[v])
|
|
{
|
|
mdist[v] = mdist[u] + graph.edges[u][v];
|
|
}
|
|
}
|
|
}
|
|
|
|
print(mdist, V);
|
|
}
|
|
|
|
// Driver Function
|
|
int main()
|
|
{
|
|
int V, E, gsrc;
|
|
int src, dst, weight;
|
|
cout << "Enter number of vertices: ";
|
|
cin >> V;
|
|
cout << "Enter number of edges: ";
|
|
cin >> E;
|
|
Graph G(V);
|
|
for (int i = 0; i < E; i++)
|
|
{
|
|
cout << "\nEdge " << i + 1 << "\nEnter source: ";
|
|
cin >> src;
|
|
cout << "Enter destination: ";
|
|
cin >> dst;
|
|
cout << "Enter weight: ";
|
|
cin >> weight;
|
|
|
|
// makes sure source and destionation are in the proper bounds.
|
|
if (src >= 0 && src < V && dst >= 0 && dst < V)
|
|
{
|
|
G.addEdge(src, dst, weight);
|
|
}
|
|
else
|
|
{
|
|
cout << "source and/or destination out of bounds" << endl;
|
|
i--;
|
|
continue;
|
|
}
|
|
}
|
|
cout << "\nEnter source:";
|
|
cin >> gsrc;
|
|
Dijkstra(G, gsrc);
|
|
|
|
return 0;
|
|
}
|