TheAlgorithms-C-Plus-Plus/others/matrix_exponentiation.cpp
2020-05-29 23:26:30 +00:00

169 lines
3.8 KiB
C++

/**
@file
@brief Matrix Exponentiation.
The problem can be solved with DP but constraints are high.
<br/>\f$a_i = b_i\f$ (for \f$i <= k\f$)
<br/>\f$a_i = c_1 a_{i-1} + c_2 a_{i-2} + ... + c_k a_{i-k}\f$ (for \f$i > k\f$)
<br/>Taking the example of Fibonacci series, \f$k=2\f$
<br/>\f$b_1 = 1,\; b_2=1\f$
<br/>\f$c_1 = 1,\; c_2=1\f$
<br/>\f$a = \begin{bmatrix}0& 1& 1& 2& \ldots\end{bmatrix}\f$
<br/>This way you can find the \f$10^{18}\f$ fibonacci number%MOD.
I have given a general way to use it. The program takes the input of B and C
matrix.
Steps for Matrix Expo
1. Create vector F1 : which is the copy of B.
2. Create transpose matrix (Learn more about it on the internet)
3. Perform \f$T^{n-1}\f$ [transpose matrix to the power n-1]
4. Multiply with F to get the last matrix of size (1\f$\times\f$k).
The first element of this matrix is the required result.
*/
#include <iostream>
#include <vector>
using std::cin;
using std::cout;
using std::vector;
/*! shorthand definition for `int64_t` */
#define ll int64_t
/*! shorthand definition for `std::endl` */
#define endl std::endl
/*! shorthand definition for `int64_t` */
#define pb push_back
#define MOD 1000000007
/** returns absolute value */
inline ll ab(ll x) { return x > 0LL ? x : -x; }
/** global variable k
* @todo @stepfencurryxiao add documetnation
*/
ll k;
/** global vector variables
* @todo @stepfencurryxiao add documetnation
*/
vector<ll> a, b, c;
/** To multiply 2 matrices
* \param [in] A matrix 1 of size (m\f$\times\f$n)
* \param [in] B \p matrix 2 of size (p\f$\times\f$q)\n\note \f$p=n\f$
* \result matrix of dimension (m\f$\times\f$q)
*/
vector<vector<ll>> multiply(const vector<vector<ll>> &A,
const vector<vector<ll>> &B)
{
vector<vector<ll>> C(k + 1, vector<ll>(k + 1));
for (ll i = 1; i <= k; i++)
{
for (ll j = 1; j <= k; j++)
{
for (ll z = 1; z <= k; z++)
{
C[i][j] = (C[i][j] + (A[i][z] * B[z][j]) % MOD) % MOD;
}
}
}
return C;
}
/** computing integer power of a matrix using recursive multiplication.
* @note A must be a square matrix for this algorithm.
* \param [in] A base matrix
* \param [in] p exponent
* \return matrix of same dimension as A
*/
vector<vector<ll>> power(const vector<vector<ll>> &A, ll p)
{
if (p == 1)
return A;
if (p % 2 == 1)
{
return multiply(A, power(A, p - 1));
}
else
{
vector<vector<ll>> X = power(A, p / 2);
return multiply(X, X);
}
}
/*! Wrapper for Fibonacci
* \param[in] n \f$n^\text{th}\f$ Fibonacci number
* \return \f$n^\text{th}\f$ Fibonacci number
*/
ll ans(ll n)
{
if (n == 0)
return 0;
if (n <= k)
return b[n - 1];
// F1
vector<ll> F1(k + 1);
for (ll i = 1; i <= k; i++) F1[i] = b[i - 1];
// Transpose matrix
vector<vector<ll>> T(k + 1, vector<ll>(k + 1));
for (ll i = 1; i <= k; i++)
{
for (ll j = 1; j <= k; j++)
{
if (i < k)
{
if (j == i + 1)
T[i][j] = 1;
else
T[i][j] = 0;
continue;
}
T[i][j] = c[k - j];
}
}
// T^n-1
T = power(T, n - 1);
// T*F1
ll res = 0;
for (ll i = 1; i <= k; i++)
{
res = (res + (T[1][i] * F1[i]) % MOD) % MOD;
}
return res;
}
/** Main function */
int main()
{
cin.tie(0);
cout.tie(0);
ll t;
cin >> t;
ll i, j, x;
while (t--)
{
cin >> k;
for (i = 0; i < k; i++)
{
cin >> x;
b.pb(x);
}
for (i = 0; i < k; i++)
{
cin >> x;
c.pb(x);
}
cin >> x;
cout << ans(x) << endl;
b.clear();
c.clear();
}
return 0;
}