TheAlgorithms-C-Plus-Plus/Dynamic Programming/Bellman-Ford.cpp
2017-10-13 11:54:05 +05:30

117 lines
2.4 KiB
C++

#include<iostream>
#include<limits.h>
using namespace std;
//Wrapper class for storing an edge
class Edge{
public: int src,dst,weight;
};
//Wrapper class for storing a graph
class Graph{
public:
int vertexNum,edgeNum;
Edge* edges;
//Constructs a graph with V vertices and E edges
Graph(int V,int E){
this->vertexNum = V;
this->edgeNum = E;
this->edges =(Edge*) malloc(E * sizeof(Edge));
}
//Adds the given edge to the graph
void addEdge(int src, int dst, int weight){
static int edgeInd = 0;
if(edgeInd < this->edgeNum){
Edge newEdge;
newEdge.src = src;
newEdge.dst = dst;
newEdge.weight = weight;
this->edges[edgeInd++] = newEdge;
}
}
};
//Utility function to print distances
void print(int dist[], int V){
cout<<"\nVertex Distance"<<endl;
for(int i = 0; i < V; i++){
if( dist[i] != INT_MAX)
cout<<i<<"\t"<<dist[i]<<endl;
else
cout<<i<<"\tINF"<<endl;
}
}
//The main function that finds the shortest path from given source
//to all other vertices using Bellman-Ford.It also detects negative
//weight cycle
void BellmanFord(Graph graph, int src){
int V = graph.vertexNum;
int E = graph.edgeNum;
int dist[V];
//Initialize distances array as INF for all except source
//Intialize source as zero
for(int i=0; i<V; i++)
dist[i] = INT_MAX;
dist[src] = 0;
//Calculate shortest path distance from source to all edges
//A path can contain maximum (|V|-1) edges
for(int i=0; i<=V-1; i++)
for(int j = 0; j<E; j++){
int u = graph.edges[j].src;
int v = graph.edges[j].dst;
int w = graph.edges[j].weight;
if(dist[u]!=INT_MAX && dist[u] + w < dist[v])
dist[v] = dist[u] + w;
}
//Iterate inner loop once more to check for negative cycle
for(int j = 0; j<E; j++){
int u = graph.edges[j].src;
int v = graph.edges[j].dst;
int w = graph.edges[j].weight;
if(dist[u]!=INT_MAX && dist[u] + w < dist[v]){
cout<<"Graph contains negative weight cycle. Hence, shortest distance not guaranteed."<<endl;
return;
}
}
print(dist, V);
return;
}
//Driver Function
int main(){
int V,E,gsrc;
int src,dst,weight;
cout<<"Enter number of vertices: ";
cin>>V;
cout<<"Enter number of edges: ";
cin>>E;
Graph G(V,E);
for(int i=0; i<E; i++){
cout<<"\nEdge "<<i+1<<"\nEnter source: ";
cin>>src;
cout<<"Enter destination: ";
cin>>dst;
cout<<"Enter weight: ";
cin>>weight;
G.addEdge(src, dst, weight);
}
cout<<"\nEnter source: ";
cin>>gsrc;
BellmanFord(G,gsrc);
return 0;
}