mirror of
https://hub.njuu.cf/TheAlgorithms/C-Plus-Plus.git
synced 2023-10-11 13:05:55 +08:00
115 lines
2.5 KiB
C++
115 lines
2.5 KiB
C++
/**
|
|
*
|
|
* \file
|
|
* \brief [Disjoint Sets Data Structure
|
|
* (Disjoint Sets)](https://en.wikipedia.org/wiki/Disjoint-set_data_structure)
|
|
*
|
|
* \author [leoyang429](https://github.com/leoyang429)
|
|
*
|
|
* \details
|
|
* A disjoint set data structure (also called union find or merge find set)
|
|
* is a data structure that tracks a set of elements partitioned into a number
|
|
* of disjoint (non-overlapping) subsets.
|
|
* Some situations where disjoint sets can be used are-
|
|
* to find connected components of a graph, kruskal's algorithm for finding
|
|
* Minimum Spanning Tree etc.
|
|
* There are two operation which we perform on disjoint sets -
|
|
* 1) Union
|
|
* 2) Find
|
|
*
|
|
*/
|
|
|
|
#include <iostream>
|
|
#include <vector>
|
|
|
|
using std::cout;
|
|
using std::endl;
|
|
using std::vector;
|
|
|
|
vector<int> root, rank;
|
|
|
|
/**
|
|
*
|
|
* Function to create a set
|
|
* @param n number of element
|
|
*
|
|
*/
|
|
void CreateSet(int n) {
|
|
root = vector<int>(n + 1);
|
|
rank = vector<int>(n + 1, 1);
|
|
for (int i = 1; i <= n; ++i) {
|
|
root[i] = i;
|
|
}
|
|
}
|
|
|
|
/**
|
|
*
|
|
* Find operation takes a number x and returns the set to which this number
|
|
* belongs to.
|
|
* @param x element of some set
|
|
* @return set to which x belongs to
|
|
*
|
|
*/
|
|
int Find(int x) {
|
|
if (root[x] == x) {
|
|
return x;
|
|
}
|
|
return root[x] = Find(root[x]);
|
|
}
|
|
|
|
/**
|
|
*
|
|
* A utility function to check if x and y are from same set or not
|
|
* @param x element of some set
|
|
* @param y element of some set
|
|
*
|
|
*/
|
|
bool InSameUnion(int x, int y) { return Find(x) == Find(y); }
|
|
|
|
/**
|
|
*
|
|
* Union operation combines two disjoint sets to make a single set
|
|
* in this union function we pass two elements and check if they are
|
|
* from different sets then combine those sets
|
|
* @param x element of some set
|
|
* @param y element of some set
|
|
*
|
|
*/
|
|
void Union(int x, int y) {
|
|
int a = Find(x), b = Find(y);
|
|
if (a != b) {
|
|
if (rank[a] < rank[b]) {
|
|
root[a] = b;
|
|
} else if (rank[a] > rank[b]) {
|
|
root[b] = a;
|
|
} else {
|
|
root[a] = b;
|
|
++rank[b];
|
|
}
|
|
}
|
|
}
|
|
|
|
/** Main function */
|
|
int main() {
|
|
// tests CreateSet & Find
|
|
int n = 100;
|
|
CreateSet(n);
|
|
for (int i = 1; i <= 100; ++i) {
|
|
if (root[i] != i) {
|
|
cout << "Fail" << endl;
|
|
break;
|
|
}
|
|
}
|
|
// tests InSameUnion & Union
|
|
cout << "1 and 2 are initially not in the same subset" << endl;
|
|
if (InSameUnion(1, 2)) {
|
|
cout << "Fail" << endl;
|
|
}
|
|
Union(1, 2);
|
|
cout << "1 and 2 are now in the same subset" << endl;
|
|
if (!InSameUnion(1, 2)) {
|
|
cout << "Fail" << endl;
|
|
}
|
|
return 0;
|
|
}
|