mirror of
https://hub.njuu.cf/TheAlgorithms/C-Plus-Plus.git
synced 2023-10-11 13:05:55 +08:00
6a6e72a381
Co-authored-by: David Leal <halfpacho@gmail.com>
108 lines
3.3 KiB
C++
108 lines
3.3 KiB
C++
/**
|
||
* @file
|
||
* @brief Implementation of the [Subset Sum](https://en.wikipedia.org/wiki/Subset_sum_problem) problem.
|
||
* @details
|
||
* We are given an array and a sum value. The algorithms find all
|
||
* the subsets of that array with sum equal to the given sum and return such subsets
|
||
* count. This approach will have exponential time complexity.
|
||
* @author [Swastika Gupta](https://github.com/swastyy)
|
||
*/
|
||
|
||
#include <cassert> /// for assert
|
||
#include <iostream> /// for io operations
|
||
#include <vector> /// for std::vector
|
||
|
||
/**
|
||
* @namespace backtracking
|
||
* @brief subset sum algorithm
|
||
*/
|
||
namespace backtracking {
|
||
/**
|
||
* @namespace Subsets
|
||
* @brief Functions for counting subsets(both continuous and non-continuous
|
||
* subarrays) in a given array with a given sum Time Complexity: O(n * 2^n),
|
||
* where ‘n’ is the number of elements in the given array.
|
||
*/
|
||
namespace Subsets {
|
||
/**
|
||
* @brief The main function implements count of subsets
|
||
* @param sum is the required sum of any subset
|
||
* @param in_arr is the input array
|
||
* @returns count of the number of subsets with required sum
|
||
*/
|
||
|
||
std::uint64_t subset_sum(int sum, const std::vector<int> &in_arr) {
|
||
int nelement = in_arr.size();
|
||
int count_of_subset = 0;
|
||
|
||
for (int i = 0; i < (1 << (nelement)); i++) {
|
||
int check = 0;
|
||
for (int j = 0; j < nelement; j++) {
|
||
if (i & (1 << j)) {
|
||
check += (in_arr[j]);
|
||
}
|
||
}
|
||
if (check == sum) {
|
||
count_of_subset++;
|
||
}
|
||
}
|
||
return count_of_subset;
|
||
}
|
||
} // namespace Subsets
|
||
} // namespace backtracking
|
||
|
||
/**
|
||
* @brief Test implementations
|
||
* @returns void
|
||
*/
|
||
static void test() {
|
||
// Test 1
|
||
std::cout << "1st test ";
|
||
std::vector<int> array1 = {-7, -3, -2, 5, 8}; // input array
|
||
assert(backtracking::Subsets::subset_sum(0, array1) ==
|
||
2); // first argument in subset_sum function is the required sum and
|
||
// second is the input array
|
||
std::cout << "passed" << std::endl;
|
||
|
||
// Test 2
|
||
std::cout << "2nd test ";
|
||
std::vector<int> array2 = {1, 2, 3, 3};
|
||
assert(backtracking::Subsets::subset_sum(6, array2) ==
|
||
3); // here we are expecting 3 subsets which sum up to 6 i.e.
|
||
// {(1,2,3),(1,2,3),(3,3)}
|
||
std::cout << "passed" << std::endl;
|
||
|
||
// Test 3
|
||
std::cout << "3rd test ";
|
||
std::vector<int> array3 = {1, 1, 1, 1};
|
||
assert(backtracking::Subsets::subset_sum(1, array3) ==
|
||
4); // here we are expecting 4 subsets which sum up to 1 i.e.
|
||
// {(1),(1),(1),(1)}
|
||
std::cout << "passed" << std::endl;
|
||
|
||
// Test 4
|
||
std::cout << "4th test ";
|
||
std::vector<int> array4 = {3, 3, 3, 3};
|
||
assert(backtracking::Subsets::subset_sum(6, array4) ==
|
||
6); // here we are expecting 6 subsets which sum up to 6 i.e.
|
||
// {(3,3),(3,3),(3,3),(3,3),(3,3),(3,3)}
|
||
std::cout << "passed" << std::endl;
|
||
|
||
// Test 5
|
||
std::cout << "5th test ";
|
||
std::vector<int> array5 = {};
|
||
assert(backtracking::Subsets::subset_sum(6, array5) ==
|
||
0); // here we are expecting 0 subsets which sum up to 6 i.e. we
|
||
// cannot select anything from an empty array
|
||
std::cout << "passed" << std::endl;
|
||
}
|
||
|
||
/**
|
||
* @brief Main function
|
||
* @returns 0 on exit
|
||
*/
|
||
int main() {
|
||
test(); // execute the test
|
||
return 0;
|
||
}
|