mirror of
https://hub.njuu.cf/TheAlgorithms/C-Plus-Plus.git
synced 2023-10-11 13:05:55 +08:00
38 lines
1.2 KiB
C++
38 lines
1.2 KiB
C++
// An efficient way to calculate nth fibonacci number faster and simpler than
|
|
// O(nlogn) method of matrix exponentiation This works by using both recursion
|
|
// and dynamic programming. as 93rd fibonacci exceeds 19 digits, which cannot be
|
|
// stored in a single long long variable, we can only use it till 92nd fibonacci
|
|
// we can use it for 10000th fibonacci etc, if we implement bigintegers.
|
|
// This algorithm works with the fact that nth fibonacci can easily found if we
|
|
// have already found n/2th or (n+1)/2th fibonacci It is a property of fibonacci
|
|
// similar to matrix exponentiation.
|
|
|
|
#include <cinttypes>
|
|
#include <cstdio>
|
|
#include <iostream>
|
|
|
|
const uint64_t MAX = 93;
|
|
|
|
uint64_t f[MAX] = {0};
|
|
|
|
uint64_t fib(uint64_t n) {
|
|
if (n == 0) return 0;
|
|
if (n == 1 || n == 2) return (f[n] = 1);
|
|
|
|
if (f[n]) return f[n];
|
|
|
|
uint64_t k = (n % 2 != 0) ? (n + 1) / 2 : n / 2;
|
|
|
|
f[n] = (n % 2 != 0) ? (fib(k) * fib(k) + fib(k - 1) * fib(k - 1))
|
|
: (2 * fib(k - 1) + fib(k)) * fib(k);
|
|
return f[n];
|
|
}
|
|
|
|
int main() {
|
|
// Main Function
|
|
for (uint64_t i = 1; i < 93; i++) {
|
|
std::cout << i << " th fibonacci number is " << fib(i) << "\n";
|
|
}
|
|
return 0;
|
|
}
|