TheAlgorithms-C-Plus-Plus/graph/lca.cpp
2019-11-28 13:30:19 +01:00

121 lines
2.5 KiB
C++

#include<bits/stdc++.h>
using namespace std;
// Find the lowest common ancestor using binary lifting in O(nlogn)
// Zero based indexing
// Resource : https://cp-algorithms.com/graph/lca_binary_lifting.html
const int N = 1005;
const int LG = log2(N) + 1;
struct lca
{
int n;
vector<int> adj[N]; // Graph
int up[LG][N]; // build this table
int level[N]; // get the levels of all of them
lca(int n_): n(n_)
{
memset(up, -1, sizeof(up));
memset(level, 0, sizeof(level));
for (int i = 0; i < n - 1; ++i)
{
int a, b;
cin >> a >> b;
a--;
b--;
adj[a].push_back(b);
adj[b].push_back(a);
}
level[0] = 0;
dfs(0, -1);
build();
}
void verify()
{
for (int i = 0; i < n; ++i)
{
cout << i << " : level: " << level[i] << endl;
}
cout << endl;
for (int i = 0; i < LG; ++i)
{
cout << "Power:" << i << ": ";
for (int j = 0; j < n; ++j)
{
cout << up[i][j] << " ";
}
cout << endl;
}
}
void build()
{
for (int i = 1; i < LG; ++i)
{
for (int j = 0; j < n; ++j)
{
if (up[i - 1][j] != -1)
{
up[i][j] = up[i - 1][up[i - 1][j]];
}
}
}
}
void dfs(int node, int par)
{
up[0][node] = par;
for (auto i: adj[node])
{
if (i != par)
{
level[i] = level[node] + 1;
dfs(i, node);
}
}
}
int query(int u, int v)
{
u--;
v--;
if (level[v] > level[u])
{
swap(u, v);
}
// u is at the bottom.
int dist = level[u] - level[v];
// Go up this much distance
for (int i = LG - 1; i >= 0; --i)
{
if (dist & (1 << i))
{
u = up[i][u];
}
}
if (u == v)
{
return u;
}
assert(level[u] == level[v]);
for (int i = LG - 1; i >= 0; --i)
{
if (up[i][u] != up[i][v])
{
u = up[i][u];
v = up[i][v];
}
}
assert(up[0][u] == up[0][v]);
return up[0][u];
}
};
int main()
{
int n; // number of nodes in the tree.
lca l(n); // will take the input in the format given
// n-1 edges of the form
// a b
// Use verify function to see.
}