mirror of
https://hub.njuu.cf/TheAlgorithms/C-Plus-Plus.git
synced 2023-10-11 13:05:55 +08:00
91 lines
2.6 KiB
C++
91 lines
2.6 KiB
C++
/**
|
|
* \file
|
|
* \brief [LU decomposition](https://en.wikipedia.org/wiki/LU_decompositon) of a
|
|
* square matrix
|
|
* \author [Krishna Vedala](https://github.com/kvedala)
|
|
*/
|
|
#include <cassert>
|
|
#include <ctime>
|
|
#include <iomanip>
|
|
#include <iostream>
|
|
|
|
#include "./lu_decomposition.h"
|
|
|
|
/**
|
|
* operator to print a matrix
|
|
*/
|
|
template <typename T>
|
|
std::ostream &operator<<(std::ostream &out, matrix<T> const &v) {
|
|
const int width = 10;
|
|
const char separator = ' ';
|
|
|
|
for (size_t row = 0; row < v.size(); row++) {
|
|
for (size_t col = 0; col < v[row].size(); col++)
|
|
out << std::left << std::setw(width) << std::setfill(separator)
|
|
<< v[row][col];
|
|
out << std::endl;
|
|
}
|
|
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Test LU decomposition
|
|
* \todo better ways to self-check a matrix output?
|
|
*/
|
|
void test1() {
|
|
int mat_size = 3; // default matrix size
|
|
const int range = 50;
|
|
const int range2 = range >> 1;
|
|
|
|
/* Create a square matrix with random values */
|
|
matrix<double> A(mat_size, std::valarray<double>(mat_size));
|
|
matrix<double> L(mat_size, std::valarray<double>(mat_size)); // output
|
|
matrix<double> U(mat_size, std::valarray<double>(mat_size)); // output
|
|
for (int i = 0; i < mat_size; i++) {
|
|
// calloc so that all valeus are '0' by default
|
|
for (int j = 0; j < mat_size; j++)
|
|
/* create random values in the limits [-range2, range-1] */
|
|
A[i][j] = static_cast<double>(std::rand() % range - range2);
|
|
}
|
|
|
|
std::clock_t start_t = std::clock();
|
|
lu_decomposition(A, &L, &U);
|
|
std::clock_t end_t = std::clock();
|
|
std::cout << "Time taken: "
|
|
<< static_cast<double>(end_t - start_t) / CLOCKS_PER_SEC << "\n";
|
|
|
|
std::cout << "A = \n" << A << "\n";
|
|
std::cout << "L = \n" << L << "\n";
|
|
std::cout << "U = \n" << U << "\n";
|
|
}
|
|
|
|
/**
|
|
* @brief Test determinant computation using LU decomposition
|
|
*/
|
|
void test2() {
|
|
std::cout << "Determinant test 1...";
|
|
matrix<int> A1({{1, 2, 3}, {4, 9, 6}, {7, 8, 9}});
|
|
assert(determinant_lu(A1) == -48);
|
|
std::cout << "passed\n";
|
|
|
|
std::cout << "Determinant test 2...";
|
|
matrix<int> A2({{1, 2, 3}, {4, 5, 6}, {7, 8, 9}});
|
|
assert(determinant_lu(A2) == 0);
|
|
std::cout << "passed\n";
|
|
|
|
std::cout << "Determinant test 3...";
|
|
matrix<float> A3({{1.2, 2.3, 3.4}, {4.5, 5.6, 6.7}, {7.8, 8.9, 9.0}});
|
|
assert(determinant_lu(A3) == 3.63);
|
|
std::cout << "passed\n";
|
|
}
|
|
|
|
/** Main function */
|
|
int main(int argc, char **argv) {
|
|
std::srand(std::time(NULL)); // random number initializer
|
|
|
|
test1();
|
|
test2();
|
|
return 0;
|
|
}
|