TheAlgorithms-C-Plus-Plus/hashing/sha256.cpp
2023-05-22 11:48:40 +00:00

243 lines
8.3 KiB
C++

/**
* @file
* @author [Md. Anisul Haque](https://github.com/mdanisulh)
* @brief Simple C++ implementation of the [SHA-256 Hashing Algorithm]
* (https://en.wikipedia.org/wiki/SHA-2)
*
* @details
* [SHA-2](https://en.wikipedia.org/wiki/SHA-2) is a set of cryptographic hash
* functions that was designed by the
* [NSA](https://en.wikipedia.org/wiki/National_Security_Agency) and first
* published in 2001. SHA-256 is a part of the SHA-2 family. SHA-256 is widely
* used for authenticating software packages and secure password hashing.
*/
#include <array> /// For std::array
#include <cassert> /// For assert
#include <cstdint> /// For uint8_t, uint32_t and uint64_t data types
#include <iomanip> /// For std::setfill and std::setw
#include <iostream> /// For IO operations
#include <sstream> /// For std::stringstream
/**
* @namespace hashing
* @brief Hashing algorithms
*/
namespace hashing {
/**
* @namespace SHA-256
* @brief Functions for the [SHA-256](https://en.wikipedia.org/wiki/SHA-2)
* algorithm implementation
*/
namespace sha256 {
/**
* @brief Pads the input string to be a multiple of 512-bits
* @param input Input string
* @return std::string The padded input string
*/
std::string prepare_input(const std::string& input) {
// Pre-processing
std::string padded_input = input;
uint64_t input_size = input.length() * 8; // Message length in bits
// Append a single '1' bit
padded_input += '\x80';
// Pad with zeros
while ((padded_input.length() * 8) % 512 != 448) padded_input += '\x00';
// Append length of the original input string as a 64-bit big-endian integer
for (uint32_t i = 64; i != 0; i -= 8) {
padded_input += static_cast<char>((input_size >> (i - 8)) & 0xFF);
}
return padded_input;
}
/**
* @brief Rotates the bits of a 32-bit unsigned integer
* @param n Integer to rotate
* @param rotate Number of bits to rotate
* @return uint32_t The rotated integer
*/
uint32_t right_rotate(uint32_t n, size_t rotate) {
return (n >> rotate) | (n << (32 - rotate));
}
/**
* @brief The SHA-256 algorithm
* @param input The input string to hash
* @return std::string The final hash value
*/
std::string sha256(const std::string& input) {
// Initialize array of hash values with first 32 bits of the fractional
// parts of the square roots of the first 8 primes 2..19
std::array<uint32_t, 8> hash = {0x6A09E667, 0xBB67AE85, 0x3C6EF372,
0xA54FF53A, 0x510E527F, 0x9B05688C,
0x1F83D9AB, 0x5BE0CD19};
// Initialize array of round constants with first 32 bits of the fractional
// parts of the cube roots of the first 64 primes 2..311
const std::array<uint32_t, 64> k = {
0x428A2F98, 0x71374491, 0xB5C0FBCF, 0xE9B5DBA5, 0x3956C25B, 0x59F111F1,
0x923F82A4, 0xAB1C5ED5, 0xD807AA98, 0x12835B01, 0x243185BE, 0x550C7DC3,
0x72BE5D74, 0x80DEB1FE, 0x9BDC06A7, 0xC19BF174, 0xE49B69C1, 0xEFBE4786,
0x0FC19DC6, 0x240CA1CC, 0x2DE92C6F, 0x4A7484AA, 0x5CB0A9DC, 0x76F988DA,
0x983E5152, 0xA831C66D, 0xB00327C8, 0xBF597FC7, 0xC6E00BF3, 0xD5A79147,
0x06CA6351, 0x14292967, 0x27B70A85, 0x2E1B2138, 0x4D2C6DFC, 0x53380D13,
0x650A7354, 0x766A0ABB, 0x81C2C92E, 0x92722C85, 0xA2BFE8A1, 0xA81A664B,
0xC24B8B70, 0xC76C51A3, 0xD192E819, 0xD6990624, 0xF40E3585, 0x106AA070,
0x19A4C116, 0x1E376C08, 0x2748774C, 0x34B0BCB5, 0x391C0CB3, 0x4ED8AA4A,
0x5B9CCA4F, 0x682E6FF3, 0x748F82EE, 0x78A5636F, 0x84C87814, 0x8CC70208,
0x90BEFFFA, 0xA4506CEB, 0xBEF9A3F7, 0xC67178F2};
const std::string padded_input = prepare_input(input);
// Process message in successive 512-bit (64-byte) chunks
for (size_t i = 0; i < padded_input.length(); i += 64) {
std::array<uint32_t, 64> blocks{};
// Copy chunk into first 16 words of the message schedule array
for (size_t j = 0; j < 16; ++j) {
blocks[j] =
(static_cast<uint8_t>(padded_input[i + j * 4]) << 24) |
(static_cast<uint8_t>(padded_input[i + j * 4 + 1]) << 16) |
(static_cast<uint8_t>(padded_input[i + j * 4 + 2]) << 8) |
static_cast<uint8_t>(padded_input[i + j * 4 + 3]);
}
for (size_t j = 16; j < 64; ++j) {
uint32_t s0 = right_rotate(blocks[j - 15], 7) ^
right_rotate(blocks[j - 15], 18) ^
(blocks[j - 15] >> 3);
uint32_t s1 = right_rotate(blocks[j - 2], 17) ^
right_rotate(blocks[j - 2], 19) ^
(blocks[j - 2] >> 10);
blocks[j] = blocks[j - 16] + s0 + blocks[j - 7] + s1;
}
// Initialize working variables
uint32_t a = hash[0];
uint32_t b = hash[1];
uint32_t c = hash[2];
uint32_t d = hash[3];
uint32_t e = hash[4];
uint32_t f = hash[5];
uint32_t g = hash[6];
uint32_t h = hash[7];
// Compression function main loop
for (size_t j = 0; j < 64; ++j) {
uint32_t s1 =
right_rotate(e, 6) ^ right_rotate(e, 11) ^ right_rotate(e, 25);
uint32_t ch = (e & f) ^ (~e & g);
uint32_t temp1 = h + s1 + ch + k[j] + blocks[j];
uint32_t s0 =
right_rotate(a, 2) ^ right_rotate(a, 13) ^ right_rotate(a, 22);
uint32_t maj = (a & b) ^ (a & c) ^ (b & c);
uint32_t temp2 = s0 + maj;
h = g;
g = f;
f = e;
e = d + temp1;
d = c;
c = b;
b = a;
a = temp1 + temp2;
}
// Update hash values
hash[0] += a;
hash[1] += b;
hash[2] += c;
hash[3] += d;
hash[4] += e;
hash[5] += f;
hash[6] += g;
hash[7] += h;
}
// Convert the hash to a hexadecimal string
std::string result;
for (size_t i = 0; i < 8; ++i) {
for (size_t j = 0; j < 4; ++j) {
uint32_t byte = (hash[i] >> (24 - j * 8)) & 0xFF;
std::stringstream ss;
ss << std::hex << std::setfill('0') << std::setw(2) << byte;
result += ss.str();
}
}
return result;
}
} // namespace sha256
} // namespace hashing
/**
* @brief Self-test implementations
* @returns void
*/
static void test() {
// 1st Test
std::string input = "";
std::string expected =
"e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855";
std::string output = hashing::sha256::sha256(input);
std::cout << "Input: " << input << std::endl;
std::cout << "Expected: " << expected << std::endl;
std::cout << "Output: " << output << std::endl;
assert(output == expected);
std::cout << "1st TEST PASSED\n\n";
// 2nd Test
input = "test";
expected =
"9f86d081884c7d659a2feaa0c55ad015a3bf4f1b2b0b822cd15d6c15b0f00a08";
output = hashing::sha256::sha256(input);
std::cout << "Input: " << input << std::endl;
std::cout << "Expected: " << expected << std::endl;
std::cout << "Output: " << output << std::endl;
assert(output == expected);
std::cout << "2nd TEST PASSED\n\n";
// 3rd Test
input = "Hello World";
expected =
"a591a6d40bf420404a011733cfb7b190d62c65bf0bcda32b57b277d9ad9f146e";
output = hashing::sha256::sha256(input);
std::cout << "Input: " << input << std::endl;
std::cout << "Expected: " << expected << std::endl;
std::cout << "Output: " << output << std::endl;
assert(output == expected);
std::cout << "3rd TEST PASSED\n\n";
// 4th Test
input = "Hello World!";
expected =
"7f83b1657ff1fc53b92dc18148a1d65dfc2d4b1fa3d677284addd200126d9069";
output = hashing::sha256::sha256(input);
std::cout << "Input: " << input << std::endl;
std::cout << "Expected: " << expected << std::endl;
std::cout << "Output: " << output << std::endl;
assert(output == expected);
std::cout << "4th TEST PASSED\n\n";
}
/**
* @brief Main function
* @returns 0 on exit
*/
int main() {
test(); // Run self-test implementations
// Custom Input
std::string input;
std::cout << "Enter a message to be hashed: ";
getline(std::cin, input);
std::string hash = hashing::sha256::sha256(input);
std::cout << "SHA-256 Hash: " << hash << std::endl;
return 0;
}