mirror of
https://hub.njuu.cf/TheAlgorithms/C-Plus-Plus.git
synced 2023-10-11 13:05:55 +08:00
8ab9a2ae93
* tidied up code based on error reports by clang-tidy * added doc for activation function
614 lines
21 KiB
C++
614 lines
21 KiB
C++
/**
|
|
* \addtogroup machine_learning Machine Learning Algorithms
|
|
* @{
|
|
* \file
|
|
* \author [Krishna Vedala](https://github.com/kvedala)
|
|
*
|
|
* \brief [Kohonen self organizing
|
|
* map](https://en.wikipedia.org/wiki/Self-organizing_map) (topological map)
|
|
*
|
|
* \details
|
|
* This example implements a powerful unsupervised learning algorithm called as
|
|
* a self organizing map. The algorithm creates a connected network of weights
|
|
* that closely follows the given data points. This thus creates a topological
|
|
* map of the given data i.e., it maintains the relationship between varipus
|
|
* data points in a much higher dimesional space by creating an equivalent in a
|
|
* 2-dimensional space.
|
|
* <img alt="Trained topological maps for the test cases in the program"
|
|
* src="https://raw.githubusercontent.com/TheAlgorithms/C-Plus-Plus/docs/images/machine_learning/2D_Kohonen_SOM.svg"
|
|
* />
|
|
* \note This C++ version of the program is considerable slower than its [C
|
|
* counterpart](https://github.com/kvedala/C/blob/master/machine_learning/kohonen_som_trace.c)
|
|
* \note The compiled code is much slower when compiled with MS Visual C++ 2019
|
|
* than with GCC on windows
|
|
* \see kohonen_som_trace.cpp
|
|
*/
|
|
#define _USE_MATH_DEFINES //< required for MS Visual C++
|
|
#include <algorithm>
|
|
#include <array>
|
|
#include <cerrno>
|
|
#include <cmath>
|
|
#include <cstdlib>
|
|
#include <cstring>
|
|
#include <ctime>
|
|
#include <fstream>
|
|
#include <iostream>
|
|
#include <valarray>
|
|
#include <vector>
|
|
#ifdef _OPENMP // check if OpenMP based parallellization is available
|
|
#include <omp.h>
|
|
#endif
|
|
|
|
/**
|
|
* Helper function to generate a random number in a given interval.
|
|
* \n Steps:
|
|
* 1. `r1 = rand() % 100` gets a random number between 0 and 99
|
|
* 2. `r2 = r1 / 100` converts random number to be between 0 and 0.99
|
|
* 3. scale and offset the random number to given range of \f$[a,b]\f$
|
|
*
|
|
* \param[in] a lower limit
|
|
* \param[in] b upper limit
|
|
* \returns random number in the range \f$[a,b]\f$
|
|
*/
|
|
double _random(double a, double b) {
|
|
return ((b - a) * (std::rand() % 100) / 100.f) + a;
|
|
}
|
|
|
|
/**
|
|
* Save a given n-dimensional data martix to file.
|
|
*
|
|
* \param[in] fname filename to save in (gets overwriten without confirmation)
|
|
* \param[in] X matrix to save
|
|
* \returns 0 if all ok
|
|
* \returns -1 if file creation failed
|
|
*/
|
|
int save_2d_data(const char *fname,
|
|
const std::vector<std::valarray<double>> &X) {
|
|
size_t num_points = X.size(); // number of rows
|
|
size_t num_features = X[0].size(); // number of columns
|
|
|
|
std::ofstream fp;
|
|
fp.open(fname);
|
|
if (!fp.is_open()) {
|
|
// error with opening file to write
|
|
std::cerr << "Error opening file " << fname << ": "
|
|
<< std::strerror(errno) << "\n";
|
|
return -1;
|
|
}
|
|
|
|
// for each point in the array
|
|
for (int i = 0; i < num_points; i++) {
|
|
// for each feature in the array
|
|
for (int j = 0; j < num_features; j++) {
|
|
fp << X[i][j]; // print the feature value
|
|
if (j < num_features - 1) { // if not the last feature
|
|
fp << ","; // suffix comma
|
|
}
|
|
}
|
|
if (i < num_points - 1) { // if not the last row
|
|
fp << "\n"; // start a new line
|
|
}
|
|
}
|
|
|
|
fp.close();
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Get minimum value and index of the value in a matrix
|
|
* \param[in] X matrix to search
|
|
* \param[in] N number of points in the vector
|
|
* \param[out] val minimum value found
|
|
* \param[out] idx_x x-index where minimum value was found
|
|
* \param[out] idx_y y-index where minimum value was found
|
|
*/
|
|
void get_min_2d(const std::vector<std::valarray<double>> &X, double *val,
|
|
int *x_idx, int *y_idx) {
|
|
val[0] = INFINITY; // initial min value
|
|
size_t N = X.size();
|
|
|
|
for (int i = 0; i < N; i++) { // traverse each x-index
|
|
auto result = std::min_element(std::begin(X[i]), std::end(X[i]));
|
|
double d_min = *result;
|
|
std::ptrdiff_t j = std::distance(std::begin(X[i]), result);
|
|
|
|
if (d_min < val[0]) { // if a lower value is found
|
|
// save the value and its index
|
|
x_idx[0] = i;
|
|
y_idx[0] = j;
|
|
val[0] = d_min;
|
|
}
|
|
}
|
|
}
|
|
|
|
/** \namespace machine_learning
|
|
* \brief Machine learning algorithms
|
|
*/
|
|
namespace machine_learning {
|
|
/** Minimum average distance of image nodes */
|
|
constexpr double MIN_DISTANCE = 1e-4;
|
|
|
|
/**
|
|
* Create the distance matrix or
|
|
* [U-matrix](https://en.wikipedia.org/wiki/U-matrix) from the trained
|
|
* 3D weiths matrix and save to disk.
|
|
*
|
|
* \param [in] fname filename to save in (gets overwriten without
|
|
* confirmation)
|
|
* \param [in] W model matrix to save
|
|
* \returns 0 if all ok
|
|
* \returns -1 if file creation failed
|
|
*/
|
|
int save_u_matrix(const char *fname,
|
|
const std::vector<std::vector<std::valarray<double>>> &W) {
|
|
std::ofstream fp(fname);
|
|
if (!fp) { // error with fopen
|
|
std::cerr << "File error (" << fname << "): " << std::strerror(errno)
|
|
<< std::endl;
|
|
return -1;
|
|
}
|
|
|
|
// neighborhood range
|
|
unsigned int R = 1;
|
|
|
|
for (int i = 0; i < W.size(); i++) { // for each x
|
|
for (int j = 0; j < W[0].size(); j++) { // for each y
|
|
double distance = 0.f;
|
|
|
|
int from_x = std::max<int>(0, i - R);
|
|
int to_x = std::min<int>(W.size(), i + R + 1);
|
|
int from_y = std::max<int>(0, j - R);
|
|
int to_y = std::min<int>(W[0].size(), j + R + 1);
|
|
int l = 0, m = 0;
|
|
#ifdef _OPENMP
|
|
#pragma omp parallel for reduction(+ : distance)
|
|
#endif
|
|
for (l = from_x; l < to_x; l++) { // scan neighborhoor in x
|
|
for (m = from_y; m < to_y; m++) { // scan neighborhood in y
|
|
auto d = W[i][j] - W[l][m];
|
|
double d2 = std::pow(d, 2).sum();
|
|
distance += std::sqrt(d2);
|
|
// distance += d2;
|
|
}
|
|
}
|
|
|
|
distance /= R * R; // mean distance from neighbors
|
|
fp << distance; // print the mean separation
|
|
if (j < W[0].size() - 1) { // if not the last column
|
|
fp << ','; // suffix comma
|
|
}
|
|
}
|
|
if (i < W.size() - 1) { // if not the last row
|
|
fp << '\n'; // start a new line
|
|
}
|
|
}
|
|
|
|
fp.close();
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Update weights of the SOM using Kohonen algorithm
|
|
*
|
|
* \param[in] X data point - N features
|
|
* \param[in,out] W weights matrix - PxQxN
|
|
* \param[in,out] D temporary vector to store distances PxQ
|
|
* \param[in] alpha learning rate \f$0<\alpha\le1\f$
|
|
* \param[in] R neighborhood range
|
|
* \returns minimum distance of sample and trained weights
|
|
*/
|
|
double update_weights(const std::valarray<double> &X,
|
|
std::vector<std::vector<std::valarray<double>>> *W,
|
|
std::vector<std::valarray<double>> *D, double alpha,
|
|
int R) {
|
|
int x = 0, y = 0;
|
|
int num_out_x = static_cast<int>(W->size()); // output nodes - in X
|
|
int num_out_y = static_cast<int>(W[0][0].size()); // output nodes - in Y
|
|
// int num_features = static_cast<int>(W[0][0][0].size()); // features =
|
|
// in Z
|
|
double d_min = 0.f;
|
|
|
|
#ifdef _OPENMP
|
|
#pragma omp for
|
|
#endif
|
|
// step 1: for each output point
|
|
for (x = 0; x < num_out_x; x++) {
|
|
for (y = 0; y < num_out_y; y++) {
|
|
(*D)[x][y] = 0.f;
|
|
// compute Euclidian distance of each output
|
|
// point from the current sample
|
|
auto d = ((*W)[x][y] - X);
|
|
(*D)[x][y] = (d * d).sum();
|
|
(*D)[x][y] = std::sqrt((*D)[x][y]);
|
|
}
|
|
}
|
|
|
|
// step 2: get closest node i.e., node with snallest Euclidian distance
|
|
// to the current pattern
|
|
int d_min_x = 0, d_min_y = 0;
|
|
get_min_2d(*D, &d_min, &d_min_x, &d_min_y);
|
|
|
|
// step 3a: get the neighborhood range
|
|
int from_x = std::max(0, d_min_x - R);
|
|
int to_x = std::min(num_out_x, d_min_x + R + 1);
|
|
int from_y = std::max(0, d_min_y - R);
|
|
int to_y = std::min(num_out_y, d_min_y + R + 1);
|
|
|
|
// step 3b: update the weights of nodes in the
|
|
// neighborhood
|
|
#ifdef _OPENMP
|
|
#pragma omp for
|
|
#endif
|
|
for (x = from_x; x < to_x; x++) {
|
|
for (y = from_y; y < to_y; y++) {
|
|
/* you can enable the following normalization if needed.
|
|
personally, I found it detrimental to convergence */
|
|
// const double s2pi = sqrt(2.f * M_PI);
|
|
// double normalize = 1.f / (alpha * s2pi);
|
|
|
|
/* apply scaling inversely proportional to distance from the
|
|
current node */
|
|
double d2 =
|
|
(d_min_x - x) * (d_min_x - x) + (d_min_y - y) * (d_min_y - y);
|
|
double scale_factor = std::exp(-d2 / (2.f * alpha * alpha));
|
|
|
|
(*W)[x][y] += (X - (*W)[x][y]) * alpha * scale_factor;
|
|
}
|
|
}
|
|
return d_min;
|
|
}
|
|
|
|
/**
|
|
* Apply incremental algorithm with updating neighborhood and learning
|
|
* rates on all samples in the given datset.
|
|
*
|
|
* \param[in] X data set
|
|
* \param[in,out] W weights matrix
|
|
* \param[in] alpha_min terminal value of alpha
|
|
*/
|
|
void kohonen_som(const std::vector<std::valarray<double>> &X,
|
|
std::vector<std::vector<std::valarray<double>>> *W,
|
|
double alpha_min) {
|
|
size_t num_samples = X.size(); // number of rows
|
|
// size_t num_features = X[0].size(); // number of columns
|
|
size_t num_out = W->size(); // output matrix size
|
|
size_t R = num_out >> 2, iter = 0;
|
|
double alpha = 1.f;
|
|
|
|
std::vector<std::valarray<double>> D(num_out);
|
|
for (int i = 0; i < num_out; i++) D[i] = std::valarray<double>(num_out);
|
|
|
|
double dmin = 1.f; // average minimum distance of all samples
|
|
double past_dmin = 1.f; // average minimum distance of all samples
|
|
double dmin_ratio = 1.f; // change per step
|
|
|
|
// Loop alpha from 1 to slpha_min
|
|
for (; alpha > 0 && dmin_ratio > 1e-5; alpha -= 1e-4, iter++) {
|
|
// Loop for each sample pattern in the data set
|
|
for (int sample = 0; sample < num_samples; sample++) {
|
|
// update weights for the current input pattern sample
|
|
dmin += update_weights(X[sample], W, &D, alpha, R);
|
|
}
|
|
|
|
// every 100th iteration, reduce the neighborhood range
|
|
if (iter % 300 == 0 && R > 1) {
|
|
R--;
|
|
}
|
|
|
|
dmin /= num_samples;
|
|
|
|
// termination condition variable -> % change in minimum distance
|
|
dmin_ratio = (past_dmin - dmin) / past_dmin;
|
|
if (dmin_ratio < 0) {
|
|
dmin_ratio = 1.f;
|
|
}
|
|
past_dmin = dmin;
|
|
|
|
std::cout << "iter: " << iter << "\t alpha: " << alpha << "\t R: " << R
|
|
<< "\t d_min: " << dmin_ratio << "\r";
|
|
}
|
|
|
|
std::cout << "\n";
|
|
}
|
|
|
|
} // namespace machine_learning
|
|
|
|
using machine_learning::kohonen_som;
|
|
using machine_learning::save_u_matrix;
|
|
|
|
/** @} */
|
|
|
|
/** Creates a random set of points distributed in four clusters in
|
|
* 3D space with centroids at the points
|
|
* * \f$(0,5, 0.5, 0.5)\f$
|
|
* * \f$(0,5,-0.5, -0.5)\f$
|
|
* * \f$(-0,5, 0.5, 0.5)\f$
|
|
* * \f$(-0,5,-0.5, -0.5)\f$
|
|
*
|
|
* \param[out] data matrix to store data in
|
|
*/
|
|
void test_2d_classes(std::vector<std::valarray<double>> *data) {
|
|
const int N = data->size();
|
|
const double R = 0.3; // radius of cluster
|
|
int i = 0;
|
|
const int num_classes = 4;
|
|
std::array<std::array<double, 2>, num_classes> centres = {
|
|
// centres of each class cluster
|
|
std::array<double, 2>({.5, .5}), // centre of class 1
|
|
std::array<double, 2>({.5, -.5}), // centre of class 2
|
|
std::array<double, 2>({-.5, .5}), // centre of class 3
|
|
std::array<double, 2>({-.5, -.5}) // centre of class 4
|
|
};
|
|
|
|
#ifdef _OPENMP
|
|
#pragma omp for
|
|
#endif
|
|
for (i = 0; i < N; i++) {
|
|
// select a random class for the point
|
|
int cls = std::rand() % num_classes;
|
|
|
|
// create random coordinates (x,y,z) around the centre of the class
|
|
data[0][i][0] = _random(centres[cls][0] - R, centres[cls][0] + R);
|
|
data[0][i][1] = _random(centres[cls][1] - R, centres[cls][1] + R);
|
|
|
|
/* The follosing can also be used
|
|
for (int j = 0; j < 2; j++)
|
|
data[i][j] = _random(centres[class][j] - R, centres[class][j] + R);
|
|
*/
|
|
}
|
|
}
|
|
|
|
/** Test that creates a random set of points distributed in four clusters in
|
|
* circumference of a circle and trains an SOM that finds that circular pattern.
|
|
* The following [CSV](https://en.wikipedia.org/wiki/Comma-separated_values)
|
|
* files are created to validate the execution:
|
|
* * `test1.csv`: random test samples points with a circular pattern
|
|
* * `w11.csv`: initial random map
|
|
* * `w12.csv`: trained SOM map
|
|
*/
|
|
void test1() {
|
|
int j = 0, N = 300;
|
|
int features = 2;
|
|
int num_out = 30;
|
|
std::vector<std::valarray<double>> X(N);
|
|
std::vector<std::vector<std::valarray<double>>> W(num_out);
|
|
for (int i = 0; i < std::max(num_out, N); i++) {
|
|
// loop till max(N, num_out)
|
|
if (i < N) { // only add new arrays if i < N
|
|
X[i] = std::valarray<double>(features);
|
|
}
|
|
if (i < num_out) { // only add new arrays if i < num_out
|
|
W[i] = std::vector<std::valarray<double>>(num_out);
|
|
for (int k = 0; k < num_out; k++) {
|
|
W[i][k] = std::valarray<double>(features);
|
|
#ifdef _OPENMP
|
|
#pragma omp for
|
|
#endif
|
|
for (j = 0; j < features; j++) {
|
|
// preallocate with random initial weights
|
|
W[i][k][j] = _random(-10, 10);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
test_2d_classes(&X); // create test data around circumference of a circle
|
|
save_2d_data("test1.csv", X); // save test data points
|
|
save_u_matrix("w11.csv", W); // save initial random weights
|
|
kohonen_som(X, &W, 1e-4); // train the SOM
|
|
save_u_matrix("w12.csv", W); // save the resultant weights
|
|
}
|
|
|
|
/** Creates a random set of points distributed in four clusters in
|
|
* 3D space with centroids at the points
|
|
* * \f$(0,5, 0.5, 0.5)\f$
|
|
* * \f$(0,5,-0.5, -0.5)\f$
|
|
* * \f$(-0,5, 0.5, 0.5)\f$
|
|
* * \f$(-0,5,-0.5, -0.5)\f$
|
|
*
|
|
* \param[out] data matrix to store data in
|
|
*/
|
|
void test_3d_classes1(std::vector<std::valarray<double>> *data) {
|
|
const size_t N = data->size();
|
|
const double R = 0.3; // radius of cluster
|
|
int i = 0;
|
|
const int num_classes = 4;
|
|
const std::array<std::array<double, 3>, num_classes> centres = {
|
|
// centres of each class cluster
|
|
std::array<double, 3>({.5, .5, .5}), // centre of class 1
|
|
std::array<double, 3>({.5, -.5, -.5}), // centre of class 2
|
|
std::array<double, 3>({-.5, .5, .5}), // centre of class 3
|
|
std::array<double, 3>({-.5, -.5 - .5}) // centre of class 4
|
|
};
|
|
|
|
#ifdef _OPENMP
|
|
#pragma omp for
|
|
#endif
|
|
for (i = 0; i < N; i++) {
|
|
// select a random class for the point
|
|
int cls = std::rand() % num_classes;
|
|
|
|
// create random coordinates (x,y,z) around the centre of the class
|
|
data[0][i][0] = _random(centres[cls][0] - R, centres[cls][0] + R);
|
|
data[0][i][1] = _random(centres[cls][1] - R, centres[cls][1] + R);
|
|
data[0][i][2] = _random(centres[cls][2] - R, centres[cls][2] + R);
|
|
|
|
/* The follosing can also be used
|
|
for (int j = 0; j < 3; j++)
|
|
data[i][j] = _random(centres[class][j] - R, centres[class][j] + R);
|
|
*/
|
|
}
|
|
}
|
|
|
|
/** Test that creates a random set of points distributed in 4 clusters in
|
|
* 3D space and trains an SOM that finds the topological pattern. The following
|
|
* [CSV](https://en.wikipedia.org/wiki/Comma-separated_values) files are created
|
|
* to validate the execution:
|
|
* * `test2.csv`: random test samples points with a lamniscate pattern
|
|
* * `w21.csv`: initial random map
|
|
* * `w22.csv`: trained SOM map
|
|
*/
|
|
void test2() {
|
|
int j = 0, N = 300;
|
|
int features = 3;
|
|
int num_out = 30;
|
|
std::vector<std::valarray<double>> X(N);
|
|
std::vector<std::vector<std::valarray<double>>> W(num_out);
|
|
for (int i = 0; i < std::max(num_out, N); i++) {
|
|
// loop till max(N, num_out)
|
|
if (i < N) { // only add new arrays if i < N
|
|
X[i] = std::valarray<double>(features);
|
|
}
|
|
if (i < num_out) { // only add new arrays if i < num_out
|
|
W[i] = std::vector<std::valarray<double>>(num_out);
|
|
for (int k = 0; k < num_out; k++) {
|
|
W[i][k] = std::valarray<double>(features);
|
|
#ifdef _OPENMP
|
|
#pragma omp for
|
|
#endif
|
|
for (j = 0; j < features; j++) {
|
|
// preallocate with random initial weights
|
|
W[i][k][j] = _random(-10, 10);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
test_3d_classes1(&X); // create test data around circumference of a circle
|
|
save_2d_data("test2.csv", X); // save test data points
|
|
save_u_matrix("w21.csv", W); // save initial random weights
|
|
kohonen_som(X, &W, 1e-4); // train the SOM
|
|
save_u_matrix("w22.csv", W); // save the resultant weights
|
|
}
|
|
|
|
/** Creates a random set of points distributed in four clusters in
|
|
* 3D space with centroids at the points
|
|
* * \f$(0,5, 0.5, 0.5)\f$
|
|
* * \f$(0,5,-0.5, -0.5)\f$
|
|
* * \f$(-0,5, 0.5, 0.5)\f$
|
|
* * \f$(-0,5,-0.5, -0.5)\f$
|
|
*
|
|
* \param[out] data matrix to store data in
|
|
*/
|
|
void test_3d_classes2(std::vector<std::valarray<double>> *data) {
|
|
const size_t N = data->size();
|
|
const double R = 0.2; // radius of cluster
|
|
int i = 0;
|
|
const int num_classes = 8;
|
|
const std::array<std::array<double, 3>, num_classes> centres = {
|
|
// centres of each class cluster
|
|
std::array<double, 3>({.5, .5, .5}), // centre of class 1
|
|
std::array<double, 3>({.5, .5, -.5}), // centre of class 2
|
|
std::array<double, 3>({.5, -.5, .5}), // centre of class 3
|
|
std::array<double, 3>({.5, -.5, -.5}), // centre of class 4
|
|
std::array<double, 3>({-.5, .5, .5}), // centre of class 5
|
|
std::array<double, 3>({-.5, .5, -.5}), // centre of class 6
|
|
std::array<double, 3>({-.5, -.5, .5}), // centre of class 7
|
|
std::array<double, 3>({-.5, -.5, -.5}) // centre of class 8
|
|
};
|
|
|
|
#ifdef _OPENMP
|
|
#pragma omp for
|
|
#endif
|
|
for (i = 0; i < N; i++) {
|
|
// select a random class for the point
|
|
int cls = std::rand() % num_classes;
|
|
|
|
// create random coordinates (x,y,z) around the centre of the class
|
|
data[0][i][0] = _random(centres[cls][0] - R, centres[cls][0] + R);
|
|
data[0][i][1] = _random(centres[cls][1] - R, centres[cls][1] + R);
|
|
data[0][i][2] = _random(centres[cls][2] - R, centres[cls][2] + R);
|
|
|
|
/* The follosing can also be used
|
|
for (int j = 0; j < 3; j++)
|
|
data[i][j] = _random(centres[class][j] - R, centres[class][j] + R);
|
|
*/
|
|
}
|
|
}
|
|
|
|
/** Test that creates a random set of points distributed in eight clusters in
|
|
* 3D space and trains an SOM that finds the topological pattern. The following
|
|
* [CSV](https://en.wikipedia.org/wiki/Comma-separated_values) files are created
|
|
* to validate the execution:
|
|
* * `test3.csv`: random test samples points with a circular pattern
|
|
* * `w31.csv`: initial random map
|
|
* * `w32.csv`: trained SOM map
|
|
*/
|
|
void test3() {
|
|
int j = 0, N = 500;
|
|
int features = 3;
|
|
int num_out = 30;
|
|
std::vector<std::valarray<double>> X(N);
|
|
std::vector<std::vector<std::valarray<double>>> W(num_out);
|
|
for (int i = 0; i < std::max(num_out, N); i++) {
|
|
// loop till max(N, num_out)
|
|
if (i < N) { // only add new arrays if i < N
|
|
X[i] = std::valarray<double>(features);
|
|
}
|
|
if (i < num_out) { // only add new arrays if i < num_out
|
|
W[i] = std::vector<std::valarray<double>>(num_out);
|
|
for (int k = 0; k < num_out; k++) {
|
|
W[i][k] = std::valarray<double>(features);
|
|
#ifdef _OPENMP
|
|
#pragma omp for
|
|
#endif
|
|
for (j = 0; j < features; j++) {
|
|
// preallocate with random initial weights
|
|
W[i][k][j] = _random(-10, 10);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
test_3d_classes2(&X); // create test data around circumference of a circle
|
|
save_2d_data("test3.csv", X); // save test data points
|
|
save_u_matrix("w31.csv", W); // save initial random weights
|
|
kohonen_som(X, &W, 1e-4); // train the SOM
|
|
save_u_matrix("w32.csv", W); // save the resultant weights
|
|
}
|
|
|
|
/**
|
|
* Convert clock cycle difference to time in seconds
|
|
*
|
|
* \param[in] start_t start clock
|
|
* \param[in] end_t end clock
|
|
* \returns time difference in seconds
|
|
*/
|
|
double get_clock_diff(clock_t start_t, clock_t end_t) {
|
|
return static_cast<double>(end_t - start_t) / CLOCKS_PER_SEC;
|
|
}
|
|
|
|
/** Main function */
|
|
int main(int argc, char **argv) {
|
|
#ifdef _OPENMP
|
|
std::cout << "Using OpenMP based parallelization\n";
|
|
#else
|
|
std::cout << "NOT using OpenMP based parallelization\n";
|
|
#endif
|
|
|
|
std::srand(std::time(nullptr));
|
|
|
|
std::clock_t start_clk = std::clock();
|
|
test1();
|
|
auto end_clk = std::clock();
|
|
std::cout << "Test 1 completed in " << get_clock_diff(start_clk, end_clk)
|
|
<< " sec\n";
|
|
|
|
start_clk = std::clock();
|
|
test2();
|
|
end_clk = std::clock();
|
|
std::cout << "Test 2 completed in " << get_clock_diff(start_clk, end_clk)
|
|
<< " sec\n";
|
|
|
|
start_clk = std::clock();
|
|
test3();
|
|
end_clk = std::clock();
|
|
std::cout << "Test 3 completed in " << get_clock_diff(start_clk, end_clk)
|
|
<< " sec\n";
|
|
|
|
std::cout
|
|
<< "(Note: Calculated times include: creating test sets, training "
|
|
"model and writing files to disk.)\n\n";
|
|
return 0;
|
|
}
|