TheAlgorithms-C-Plus-Plus/Sorting/Tim Sort.cpp
sandeeproy99 8b6530526a
Tim Sort.cpp
Tim Sort Algorithm is based on radix sort & bubble sort.

It's stable algorithm which works in O(n Log n) time, is used in Java's Array.sort(). It first sorts using small pieces, later sorts each with merge sort.
2017-10-28 16:26:02 +05:30

117 lines
2.9 KiB
C++

// C++ program to perform TimSort.
#include<bits/stdc++.h>
using namespace std;
const int RUN = 32;
// this function sorts array from left index to to right index which is of size atmost RUN
void insertionSort(int arr[], int left, int right)
{
for (int i = left + 1; i <= right; i++)
{
int temp = arr[i];
int j = i - 1;
while (arr[j] > temp && j >= left)
{
arr[j+1] = arr[j];
j--;
}
arr[j+1] = temp;
}
}
// merge function merges the sorted runs
void merge(int arr[], int l, int m, int r)
{
// original array is broken in two parts, left and right array
int len1 = m - l + 1, len2 = r - m;
int left[len1], right[len2];
for (int i = 0; i < len1; i++)
left[i] = arr[l + i];
for (int i = 0; i < len2; i++)
right[i] = arr[m + 1 + i];
int i = 0;
int j = 0;
int k = l;
// after comparing, we merge those two array in larger sub array
while (i < len1 && j < len2)
{
if (left[i] <= right[j])
{
arr[k] = left[i];
i++;
}
else
{
arr[k] = right[j];
j++;
}
k++;
}
// copy remaining elements of left, if any
while (i < len1)
{
arr[k] = left[i];
k++;
i++;
}
// copy remaining element of right, if any
while (j < len2)
{
arr[k] = right[j];
k++;
j++;
}
}
// iterative Timsort function to sort the array[0...n-1] (similar to merge sort)
void timSort(int arr[], int n)
{
// Sort individual subarrays of size RUN
for (int i = 0; i < n; i+=RUN)
insertionSort(arr, i, min((i+31), (n-1)));
// start merging from size RUN (or 32). It will merge to form size 64, then 128, 256 and so on ....
for (int size = RUN; size < n; size = 2*size)
{
// pick starting point of left sub array. We are going to merge arr[left..left+size-1] and arr[left+size, left+2*size-1]
// After every merge, we increase left by 2*size
for (int left = 0; left < n; left += 2*size)
{
// find ending point of left sub array
// mid+1 is starting point of right sub array
int mid = left + size - 1;
int right = min((left + 2*size - 1), (n-1));
// merge sub array arr[left.....mid] & arr[mid+1....right]
merge(arr, left, mid, right);
}
}
}
// utility function to print the Array
void printArray(int arr[], int n)
{
for (int i = 0; i < n; i++)
printf("%d ", arr[i]);
printf("\n");
}
// Driver program to test above function
int main()
{
int arr[] = {5, 21, 7, 23, 19};
int n = sizeof(arr)/sizeof(arr[0]);
printf("Given Array is\n");
printArray(arr, n);
timSort(arr, n);
printf("After Sorting Array is\n");
printArray(arr, n);
return 0;
}