mirror of
https://hub.njuu.cf/TheAlgorithms/C-Plus-Plus.git
synced 2023-10-11 13:05:55 +08:00
149 lines
5.2 KiB
C++
149 lines
5.2 KiB
C++
/**
|
|
* @file
|
|
* @brief [A fast Fourier transform
|
|
* (FFT)](https://medium.com/@aiswaryamathur/understanding-fast-fouriertransform-from-scratch-to-solve-polynomial-multiplication-8018d511162f)
|
|
is an algorithm that computes the
|
|
* discrete Fourier transform (DFT) of a sequence , or its inverse (IDFT) , this
|
|
algorithm
|
|
* has application in use case scenario where a user wants to find points of a
|
|
function
|
|
* in short period time by just using the coefficents of the polynomial
|
|
function.
|
|
* It can be also used to find inverse fourier transform by just switching the value of omega.
|
|
* @time complexity
|
|
* this algorithm computes the DFT in O(nlogn) time in comparison to traditional O(n^2).
|
|
* @details
|
|
* https://medium.com/@aiswaryamathur/understanding-fast-fourier-transform-from-scratch-to
|
|
-solve-polynomial-multiplication-8018d511162f
|
|
* @author [Ameya Chawla](https://github.com/ameyachawlaggsipu)
|
|
*/
|
|
|
|
#include <cassert> /// for assert
|
|
#include <cmath> /// for mathematical-related functions
|
|
#include <complex> /// for storing points and coefficents
|
|
#include <iostream> /// for IO operations
|
|
#include <vector> /// for storing test cases
|
|
|
|
/**
|
|
* @namespace numerical_methods
|
|
* @brief Numerical algorithms/methods
|
|
*/
|
|
namespace numerical_methods {
|
|
/**
|
|
* @brief FastFourierTransform is a recursive function which returns list of
|
|
* complex numbers
|
|
* @param p List of Coefficents in form of complex numbers
|
|
* @param n Count of elements in list p
|
|
* @returns p if n==1
|
|
* @returns y if n!=1
|
|
*/
|
|
std::complex<double> *FastFourierTransform(std::complex<double> *p,
|
|
uint64_t n) {
|
|
double pi = 2 * asin(1.0); /// Declaring value of pi
|
|
|
|
if (n == 1) {
|
|
return p; /// Base Case To return
|
|
}
|
|
|
|
std::complex<double> om = std::complex<double>(
|
|
cos(2 * pi / n), sin(2 * pi / n)); /// Calculating value of omega
|
|
|
|
auto *pe = new std::complex<double>[n / 2]; /// Coefficents of even power
|
|
|
|
auto *po = new std::complex<double>[n / 2]; /// Coefficents of odd power
|
|
|
|
uint64_t k1 = 0, k2 = 0;
|
|
for (uint64_t j = 0; j < n; j++) {
|
|
if (j % 2 == 0) {
|
|
pe[k1++] = p[j]; /// Assigning values of even coefficents
|
|
|
|
} else
|
|
po[k2++] = p[j]; /// Assigning value of odd coefficents
|
|
}
|
|
|
|
std::complex<double> *ye =
|
|
FastFourierTransform(pe, n / 2); /// Recursive Call
|
|
|
|
std::complex<double> *yo =
|
|
FastFourierTransform(po, n / 2); /// Recursive Call
|
|
|
|
auto *y = new std::complex<double>[n]; /// Final value representation list
|
|
|
|
for (uint64_t i = 0; i < n / 2; i++) {
|
|
y[i] = ye[i] + pow(om, i) * yo[i]; /// Updating the first n/2 elements
|
|
y[i + n / 2] =
|
|
ye[i] - pow(om, i) * yo[i]; /// Updating the last n/2 elements
|
|
}
|
|
delete[] ye; /// Deleting dynamic array ye
|
|
delete[] yo; /// Deleting dynamic array yo
|
|
delete[] pe; /// Deleting dynamic array pe
|
|
delete[] po; /// Deleting dynamic array po
|
|
return y; /// Returns the list
|
|
}
|
|
} // namespace numerical_methods
|
|
|
|
/**
|
|
* @brief Self-test implementations
|
|
* declaring two test cases and checking for the error
|
|
* in predicted and true value is less than 0.000000000001.
|
|
* @returns void
|
|
*/
|
|
static void test() {
|
|
/* descriptions of the following test */
|
|
|
|
auto *t1 = new std::complex<double>[2]; /// Test case 1
|
|
t1[0] = {1, 0};
|
|
t1[1] = {2, 0};
|
|
|
|
auto *t2 = new std::complex<double>[4]; /// Test case 2
|
|
t2[0] = {1, 0};
|
|
t2[1] = {2, 0};
|
|
t2[2] = {3, 0};
|
|
t2[3] = {4, 0};
|
|
|
|
uint8_t n1 = sizeof(t1) / sizeof(std::complex<double>);
|
|
uint8_t n2 = sizeof(t2) / sizeof(std::complex<double>);
|
|
|
|
std::vector<std::complex<double>> r1 = {
|
|
{3, 0}, {-1, 0}}; /// True Answer for test case 1
|
|
|
|
std::vector<std::complex<double>> r2 = {
|
|
{10, 0}, {-2, -2}, {-2, 0}, {-2, 2}}; /// True Answer for test case 2
|
|
|
|
std::complex<double> *o1 = numerical_methods::FastFourierTransform(t1, n1);
|
|
std::complex<double> *o2 = numerical_methods::FastFourierTransform(t2, n2);
|
|
|
|
for (uint8_t i = 0; i < n1; i++) {
|
|
assert((r1[i].real() - o1->real() < 0.000000000001) &&
|
|
(r1[i].imag() - o1->imag() <
|
|
0.000000000001)); /// Comparing for both real and imaginary
|
|
/// values for test case 1
|
|
o1++;
|
|
}
|
|
|
|
for (uint8_t i = 0; i < n2; i++) {
|
|
assert((r2[i].real() - o2->real() < 0.000000000001) &&
|
|
(r2[i].imag() - o2->imag() <
|
|
0.000000000001)); /// Comparing for both real and imaginary
|
|
/// values for test case 2
|
|
o2++;
|
|
}
|
|
|
|
delete[] o1; /// Deleting dynamic array o1
|
|
delete[] o2; /// Deleting dynamic array o2
|
|
delete[] t1; /// Deleting dynamic array t1
|
|
delete[] t2; /// Deleting dynamic array t2
|
|
}
|
|
|
|
/**
|
|
* @brief Main function
|
|
* @param argc commandline argument count (ignored)
|
|
* @param argv commandline array of arguments (ignored)
|
|
* calls automated test function to test the working of fast fourier transform.
|
|
* @returns 0 on exit
|
|
*/
|
|
int main(int argc, char const *argv[]) {
|
|
test(); // run self-test implementations
|
|
return 0;
|
|
}
|