TheAlgorithms-C-Plus-Plus/numerical_methods/fast_fourier_transform.cpp

149 lines
5.2 KiB
C++

/**
* @file
* @brief [A fast Fourier transform
* (FFT)](https://medium.com/@aiswaryamathur/understanding-fast-fouriertransform-from-scratch-to-solve-polynomial-multiplication-8018d511162f)
is an algorithm that computes the
* discrete Fourier transform (DFT) of a sequence , or its inverse (IDFT) , this
algorithm
* has application in use case scenario where a user wants to find points of a
function
* in short period time by just using the coefficents of the polynomial
function.
* It can be also used to find inverse fourier transform by just switching the value of omega.
* @time complexity
* this algorithm computes the DFT in O(nlogn) time in comparison to traditional O(n^2).
* @details
* https://medium.com/@aiswaryamathur/understanding-fast-fourier-transform-from-scratch-to
-solve-polynomial-multiplication-8018d511162f
* @author [Ameya Chawla](https://github.com/ameyachawlaggsipu)
*/
#include <cassert> /// for assert
#include <cmath> /// for mathematical-related functions
#include <complex> /// for storing points and coefficents
#include <iostream> /// for IO operations
#include <vector> /// for storing test cases
/**
* @namespace numerical_methods
* @brief Numerical algorithms/methods
*/
namespace numerical_methods {
/**
* @brief FastFourierTransform is a recursive function which returns list of
* complex numbers
* @param p List of Coefficents in form of complex numbers
* @param n Count of elements in list p
* @returns p if n==1
* @returns y if n!=1
*/
std::complex<double> *FastFourierTransform(std::complex<double> *p,
uint64_t n) {
double pi = 2 * asin(1.0); /// Declaring value of pi
if (n == 1) {
return p; /// Base Case To return
}
std::complex<double> om = std::complex<double>(
cos(2 * pi / n), sin(2 * pi / n)); /// Calculating value of omega
auto *pe = new std::complex<double>[n / 2]; /// Coefficents of even power
auto *po = new std::complex<double>[n / 2]; /// Coefficents of odd power
uint64_t k1 = 0, k2 = 0;
for (uint64_t j = 0; j < n; j++) {
if (j % 2 == 0) {
pe[k1++] = p[j]; /// Assigning values of even coefficents
} else
po[k2++] = p[j]; /// Assigning value of odd coefficents
}
std::complex<double> *ye =
FastFourierTransform(pe, n / 2); /// Recursive Call
std::complex<double> *yo =
FastFourierTransform(po, n / 2); /// Recursive Call
auto *y = new std::complex<double>[n]; /// Final value representation list
for (uint64_t i = 0; i < n / 2; i++) {
y[i] = ye[i] + pow(om, i) * yo[i]; /// Updating the first n/2 elements
y[i + n / 2] =
ye[i] - pow(om, i) * yo[i]; /// Updating the last n/2 elements
}
delete[] ye; /// Deleting dynamic array ye
delete[] yo; /// Deleting dynamic array yo
delete[] pe; /// Deleting dynamic array pe
delete[] po; /// Deleting dynamic array po
return y; /// Returns the list
}
} // namespace numerical_methods
/**
* @brief Self-test implementations
* declaring two test cases and checking for the error
* in predicted and true value is less than 0.000000000001.
* @returns void
*/
static void test() {
/* descriptions of the following test */
auto *t1 = new std::complex<double>[2]; /// Test case 1
t1[0] = {1, 0};
t1[1] = {2, 0};
auto *t2 = new std::complex<double>[4]; /// Test case 2
t2[0] = {1, 0};
t2[1] = {2, 0};
t2[2] = {3, 0};
t2[3] = {4, 0};
uint8_t n1 = sizeof(t1) / sizeof(std::complex<double>);
uint8_t n2 = sizeof(t2) / sizeof(std::complex<double>);
std::vector<std::complex<double>> r1 = {
{3, 0}, {-1, 0}}; /// True Answer for test case 1
std::vector<std::complex<double>> r2 = {
{10, 0}, {-2, -2}, {-2, 0}, {-2, 2}}; /// True Answer for test case 2
std::complex<double> *o1 = numerical_methods::FastFourierTransform(t1, n1);
std::complex<double> *o2 = numerical_methods::FastFourierTransform(t2, n2);
for (uint8_t i = 0; i < n1; i++) {
assert((r1[i].real() - o1->real() < 0.000000000001) &&
(r1[i].imag() - o1->imag() <
0.000000000001)); /// Comparing for both real and imaginary
/// values for test case 1
o1++;
}
for (uint8_t i = 0; i < n2; i++) {
assert((r2[i].real() - o2->real() < 0.000000000001) &&
(r2[i].imag() - o2->imag() <
0.000000000001)); /// Comparing for both real and imaginary
/// values for test case 2
o2++;
}
delete[] o1; /// Deleting dynamic array o1
delete[] o2; /// Deleting dynamic array o2
delete[] t1; /// Deleting dynamic array t1
delete[] t2; /// Deleting dynamic array t2
}
/**
* @brief Main function
* @param argc commandline argument count (ignored)
* @param argv commandline array of arguments (ignored)
* calls automated test function to test the working of fast fourier transform.
* @returns 0 on exit
*/
int main(int argc, char const *argv[]) {
test(); // run self-test implementations
return 0;
}