mirror of
https://hub.njuu.cf/TheAlgorithms/C-Plus-Plus.git
synced 2023-10-11 13:05:55 +08:00
159 lines
3.6 KiB
C++
159 lines
3.6 KiB
C++
// A C++ program to demonstrate common Binary Heap Operations
|
|
#include <iostream>
|
|
#include <climits>
|
|
using namespace std;
|
|
|
|
// Prototype of a utility function to swap two integers
|
|
void swap(int *x, int *y);
|
|
|
|
// A class for Min Heap
|
|
class MinHeap
|
|
{
|
|
int *harr; // pointer to array of elements in heap
|
|
int capacity; // maximum possible size of min heap
|
|
int heap_size; // Current number of elements in min heap
|
|
public:
|
|
// Constructor
|
|
MinHeap(int capacity);
|
|
|
|
// to heapify a subtree with the root at given index
|
|
void MinHeapify(int);
|
|
|
|
int parent(int i) { return (i - 1) / 2; }
|
|
|
|
// to get index of left child of node at index i
|
|
int left(int i) { return (2 * i + 1); }
|
|
|
|
// to get index of right child of node at index i
|
|
int right(int i) { return (2 * i + 2); }
|
|
|
|
// to extract the root which is the minimum element
|
|
int extractMin();
|
|
|
|
// Decreases key value of key at index i to new_val
|
|
void decreaseKey(int i, int new_val);
|
|
|
|
// Returns the minimum key (key at root) from min heap
|
|
int getMin() { return harr[0]; }
|
|
|
|
// Deletes a key stored at index i
|
|
void deleteKey(int i);
|
|
|
|
// Inserts a new key 'k'
|
|
void insertKey(int k);
|
|
};
|
|
|
|
// Constructor: Builds a heap from a given array a[] of given size
|
|
MinHeap::MinHeap(int cap)
|
|
{
|
|
heap_size = 0;
|
|
capacity = cap;
|
|
harr = new int[cap];
|
|
}
|
|
|
|
// Inserts a new key 'k'
|
|
void MinHeap::insertKey(int k)
|
|
{
|
|
if (heap_size == capacity)
|
|
{
|
|
cout << "\nOverflow: Could not insertKey\n";
|
|
return;
|
|
}
|
|
|
|
// First insert the new key at the end
|
|
heap_size++;
|
|
int i = heap_size - 1;
|
|
harr[i] = k;
|
|
|
|
// Fix the min heap property if it is violated
|
|
while (i != 0 && harr[parent(i)] > harr[i])
|
|
{
|
|
swap(&harr[i], &harr[parent(i)]);
|
|
i = parent(i);
|
|
}
|
|
}
|
|
|
|
// Decreases value of key at index 'i' to new_val. It is assumed that
|
|
// new_val is smaller than harr[i].
|
|
void MinHeap::decreaseKey(int i, int new_val)
|
|
{
|
|
harr[i] = new_val;
|
|
while (i != 0 && harr[parent(i)] > harr[i])
|
|
{
|
|
swap(&harr[i], &harr[parent(i)]);
|
|
i = parent(i);
|
|
}
|
|
}
|
|
|
|
// Method to remove minimum element (or root) from min heap
|
|
int MinHeap::extractMin()
|
|
{
|
|
if (heap_size <= 0)
|
|
return INT_MAX;
|
|
if (heap_size == 1)
|
|
{
|
|
heap_size--;
|
|
return harr[0];
|
|
}
|
|
|
|
// Store the minimum value, and remove it from heap
|
|
int root = harr[0];
|
|
harr[0] = harr[heap_size - 1];
|
|
heap_size--;
|
|
MinHeapify(0);
|
|
|
|
return root;
|
|
}
|
|
|
|
// This function deletes key at index i. It first reduced value to minus
|
|
// infinite, then calls extractMin()
|
|
void MinHeap::deleteKey(int i)
|
|
{
|
|
decreaseKey(i, INT_MIN);
|
|
extractMin();
|
|
}
|
|
|
|
// A recursive method to heapify a subtree with the root at given index
|
|
// This method assumes that the subtrees are already heapified
|
|
void MinHeap::MinHeapify(int i)
|
|
{
|
|
int l = left(i);
|
|
int r = right(i);
|
|
int smallest = i;
|
|
if (l < heap_size && harr[l] < harr[i])
|
|
smallest = l;
|
|
if (r < heap_size && harr[r] < harr[smallest])
|
|
smallest = r;
|
|
if (smallest != i)
|
|
{
|
|
swap(&harr[i], &harr[smallest]);
|
|
MinHeapify(smallest);
|
|
}
|
|
}
|
|
|
|
// A utility function to swap two elements
|
|
void swap(int *x, int *y)
|
|
{
|
|
int temp = *x;
|
|
*x = *y;
|
|
*y = temp;
|
|
}
|
|
|
|
// Driver program to test above functions
|
|
int main()
|
|
{
|
|
MinHeap h(11);
|
|
h.insertKey(3);
|
|
h.insertKey(2);
|
|
h.deleteKey(1);
|
|
h.insertKey(15);
|
|
h.insertKey(5);
|
|
h.insertKey(4);
|
|
h.insertKey(45);
|
|
cout << h.extractMin() << " ";
|
|
cout << h.getMin() << " ";
|
|
h.decreaseKey(2, 1);
|
|
cout << h.getMin();
|
|
return 0;
|
|
}
|