mirror of
https://hub.njuu.cf/TheAlgorithms/C-Plus-Plus.git
synced 2023-10-11 13:05:55 +08:00
115 lines
3.7 KiB
C++
115 lines
3.7 KiB
C++
/**
|
|
* @file
|
|
* @brief Implementation of cutting a rod problem
|
|
*
|
|
* @details
|
|
* Given a rod of length n inches and an array of prices that
|
|
* contains prices of all pieces of size<=n. Determine
|
|
* the maximum profit obtainable by cutting up the rod and selling
|
|
* the pieces.
|
|
*
|
|
* ### Algorithm
|
|
* The idea is to break the given rod into every smaller piece as possible
|
|
* and then check profit for each piece, by calculating maximum profit for
|
|
* smaller pieces we will build the solution for larger pieces in bottom-up
|
|
* manner.
|
|
*
|
|
* @author [Anmol](https://github.com/Anmol3299)
|
|
* @author [Pardeep](https://github.com/Pardeep009)
|
|
*/
|
|
|
|
#include <array>
|
|
#include <cassert>
|
|
#include <climits>
|
|
#include <iostream>
|
|
/**
|
|
* @namespace dynamic_programming
|
|
* @brief Dynamic Programming algorithms
|
|
*/
|
|
namespace dynamic_programming {
|
|
/**
|
|
* @namespace cut_rod
|
|
* @brief Implementation of cutting a rod problem
|
|
*/
|
|
namespace cut_rod {
|
|
/**
|
|
* @brief Cuts the rod in different pieces and
|
|
* stores the maximum profit for each piece of the rod.
|
|
* @tparam T size of the price array
|
|
* @param n size of the rod in inches
|
|
* @param price an array of prices that contains prices of all pieces of size<=n
|
|
* @return maximum profit obtainable for @param n inch rod.
|
|
*/
|
|
template <size_t T>
|
|
int maxProfitByCuttingRod(const std::array<int, T> &price, const uint64_t &n) {
|
|
int *profit =
|
|
new int[n + 1]; // profit[i] will hold maximum profit for i inch rod
|
|
|
|
profit[0] = 0; // if length of rod is zero, then no profit
|
|
|
|
// outer loop will select size of rod, starting from 1 inch to n inch rod.
|
|
// inner loop will evaluate the maximum profit we can get for i inch rod by
|
|
// making every possible cut on it and will store it in profit[i].
|
|
for (size_t i = 1; i <= n; i++) {
|
|
int q = INT_MIN;
|
|
for (size_t j = 1; j <= i; j++) {
|
|
q = std::max(q, price[j - 1] + profit[i - j]);
|
|
}
|
|
profit[i] = q;
|
|
}
|
|
const int16_t ans = profit[n];
|
|
delete[] profit;
|
|
return ans; // returning maximum profit
|
|
}
|
|
} // namespace cut_rod
|
|
} // namespace dynamic_programming
|
|
|
|
/**
|
|
* @brief Function to test above algorithm
|
|
* @returns void
|
|
*/
|
|
static void test() {
|
|
// Test 1
|
|
const int16_t n1 = 8; // size of rod
|
|
std::array<int32_t, n1> price1 = {1,2,4,6,8,45,21,9}; // price array
|
|
const int64_t max_profit1 =
|
|
dynamic_programming::cut_rod::maxProfitByCuttingRod(price1, n1);
|
|
const int64_t expected_max_profit1 = 47;
|
|
assert(max_profit1 == expected_max_profit1);
|
|
std::cout << "Maximum profit with " << n1 << " inch road is " << max_profit1
|
|
<< std::endl;
|
|
|
|
// Test 2
|
|
const int16_t n2 = 30; // size of rod
|
|
std::array<int32_t, n2> price2 = {
|
|
1, 5, 8, 9, 10, 17, 17, 20, 24, 30, // price array
|
|
31, 32, 33, 34, 35, 36, 37, 38, 39, 40,
|
|
41, 42, 43, 44, 45, 46, 47, 48, 49, 50};
|
|
|
|
const int64_t max_profit2=
|
|
dynamic_programming::cut_rod::maxProfitByCuttingRod(price2, n2);
|
|
const int32_t expected_max_profit2 = 90;
|
|
assert(max_profit2 == expected_max_profit2);
|
|
std::cout << "Maximum profit with " << n2 << " inch road is " << max_profit2
|
|
<< std::endl;
|
|
// Test 3
|
|
const int16_t n3 = 5; // size of rod
|
|
std::array<int32_t, n3> price3 = {2,9,17,23,45}; // price array
|
|
const int64_t max_profit3 =
|
|
dynamic_programming::cut_rod::maxProfitByCuttingRod(price3, n3);
|
|
const int64_t expected_max_profit3 = 45;
|
|
assert(max_profit3 == expected_max_profit3);
|
|
std::cout << "Maximum profit with " << n3 << " inch road is " << max_profit3
|
|
<< std::endl;
|
|
}
|
|
|
|
/**
|
|
* @brief Main function
|
|
* @returns 0 on exit
|
|
*/
|
|
int main() {
|
|
// Testing
|
|
test();
|
|
return 0;
|
|
}
|