mirror of
https://hub.njuu.cf/TheAlgorithms/C-Plus-Plus.git
synced 2023-10-11 13:05:55 +08:00
73ff948b0d
* updating DIRECTORY.md
* feat: Solving Linear Recurrence using Matrix Exponentiation
* updating DIRECTORY.md
* clang-format and clang-tidy fixes for 83efb534
* Directory.md
* updating DIRECTORY.md
* Comment Modification
* Comments
* Missing namespace
* Missing namespace
* Type checking
* reduced mod size due to integer overflow, changed int32 to int64
* Adding template parameters and missing markdowns.
* Markdown and minor code changes
* Minor changes
Co-authored-by: github-actions <${GITHUB_ACTOR}@users.noreply.github.com>
373 lines
14 KiB
C++
373 lines
14 KiB
C++
/**
|
|
* @brief Evaluate recurrence relation using [matrix
|
|
* exponentiation](https://www.hackerearth.com/practice/notes/matrix-exponentiation-1/).
|
|
* @details
|
|
* Given a recurrence relation; evaluate the value of nth term.
|
|
* For e.g., For fibonacci series, recurrence series is `f(n) = f(n-1) + f(n-2)`
|
|
* where `f(0) = 0` and `f(1) = 1`.
|
|
* Note that the method used only demonstrates
|
|
* recurrence relation with one variable (n), unlike `nCr` problem, since it has
|
|
* two (n, r)
|
|
*
|
|
* ### Algorithm
|
|
* This problem can be solved using matrix exponentiation method.
|
|
* @see here for simple [number exponentiation
|
|
* algorithm](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/math/modular_exponentiation.cpp)
|
|
* or [explaination
|
|
* here](https://en.wikipedia.org/wiki/Exponentiation_by_squaring).
|
|
* @author [Ashish Daulatabad](https://github.com/AshishYUO)
|
|
*/
|
|
#include <cassert> /// for assert
|
|
#include <iostream> /// for IO operations
|
|
#include <vector> /// for std::vector STL
|
|
|
|
/**
|
|
* @namespace math
|
|
* @brief Mathematical algorithms
|
|
*/
|
|
namespace math {
|
|
/**
|
|
* @namespace linear_recurrence_matrix
|
|
* @brief Functions for [Linear Recurrence
|
|
* Matrix](https://www.hackerearth.com/practice/notes/matrix-exponentiation-1/)
|
|
* implementation.
|
|
*/
|
|
namespace linear_recurrence_matrix {
|
|
/**
|
|
* @brief Implementation of matrix multiplication
|
|
* @details Multiplies matrix A and B, given total columns in A are equal to
|
|
* total given rows in column B
|
|
* @tparam T template type for integer as well as floating values, default is
|
|
* long long int
|
|
* @param _mat_a first matrix of size n * m
|
|
* @param _mat_b second matrix of size m * k
|
|
* @returns `_mat_c` resultant matrix of size n * k
|
|
* Complexity: `O(n*m*k)`
|
|
* @note The complexity in this case will be O(n^3) due to the nature of the
|
|
* problem. We'll be multiplying the matrix with itself most of the time.
|
|
*/
|
|
template <typename T = int64_t>
|
|
std::vector<std::vector<T>> matrix_multiplication(
|
|
const std::vector<std::vector<T>>& _mat_a,
|
|
const std::vector<std::vector<T>>& _mat_b, const int64_t mod = 1000000007) {
|
|
// assert that columns in `_mat_a` and rows in `_mat_b` are equal
|
|
assert(_mat_a[0].size() == _mat_b.size());
|
|
std::vector<std::vector<T>> _mat_c(_mat_a.size(),
|
|
std::vector<T>(_mat_b[0].size(), 0));
|
|
/**
|
|
* Actual matrix multiplication.
|
|
*/
|
|
for (uint32_t i = 0; i < _mat_a.size(); ++i) {
|
|
for (uint32_t j = 0; j < _mat_b[0].size(); ++j) {
|
|
for (uint32_t k = 0; k < _mat_b.size(); ++k) {
|
|
_mat_c[i][j] =
|
|
(_mat_c[i][j] % mod +
|
|
(_mat_a[i][k] % mod * _mat_b[k][j] % mod) % mod) %
|
|
mod;
|
|
}
|
|
}
|
|
}
|
|
return _mat_c;
|
|
}
|
|
/**
|
|
* @brief Returns whether matrix `mat` is a [zero
|
|
* matrix.](https://en.wikipedia.org/wiki/Zero_matrix)
|
|
* @tparam T template type for integer as well as floating values, default is
|
|
* long long int
|
|
* @param _mat A matrix
|
|
* @returns true if it is a zero matrix else false
|
|
*/
|
|
template <typename T = int64_t>
|
|
bool is_zero_matrix(const std::vector<std::vector<T>>& _mat) {
|
|
for (uint32_t i = 0; i < _mat.size(); ++i) {
|
|
for (uint32_t j = 0; j < _mat[i].size(); ++j) {
|
|
if (_mat[i][j] != 0) {
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* @brief Implementation of Matrix exponentiation
|
|
* @details returns the matrix exponentiation `(B^n)` in `k^3 * O(log2(power))`
|
|
* time, where `k` is the size of matrix (k by k).
|
|
* @tparam T template type for integer as well as floating values, default is
|
|
* long long int
|
|
* @param _mat matrix for exponentiation
|
|
* @param power the exponent value
|
|
* @returns the matrix _mat to the power `power (_mat^power)`
|
|
*/
|
|
template <typename T = int64_t>
|
|
std::vector<std::vector<T>> matrix_exponentiation(
|
|
std::vector<std::vector<T>> _mat, uint64_t power,
|
|
const int64_t mod = 1000000007) {
|
|
/**
|
|
* Initializing answer as identity matrix. For simple binary
|
|
* exponentiation reference, [see
|
|
* here](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/math/modular_exponentiation.cpp)
|
|
*/
|
|
if (is_zero_matrix(_mat)) {
|
|
return _mat;
|
|
}
|
|
|
|
std::vector<std::vector<T>> _mat_answer(_mat.size(),
|
|
std::vector<T>(_mat.size(), 0));
|
|
|
|
for (uint32_t i = 0; i < _mat.size(); ++i) {
|
|
_mat_answer[i][i] = 1;
|
|
}
|
|
// exponentiation algorithm here.
|
|
while (power > 0) {
|
|
if (power & 1) {
|
|
_mat_answer = matrix_multiplication(_mat_answer, _mat, mod);
|
|
}
|
|
power >>= 1;
|
|
_mat = matrix_multiplication(_mat, _mat, mod);
|
|
}
|
|
|
|
return _mat_answer;
|
|
}
|
|
|
|
/**
|
|
* @brief Implementation of nth recurrence series.
|
|
* @details Returns the nth term in the recurrence series.
|
|
* Note that the function assumes definition of base cases from `n = 0`
|
|
* (e.g., for fibonacci, `f(0)` has a defined value `0`)
|
|
* @tparam T template type for integer as well as floating values, default is
|
|
* long long int
|
|
* @param _mat [square matrix](https://en.m.wikipedia.org/wiki/Square_matrix)
|
|
* that evaluates the nth term using exponentiation
|
|
* @param _base_cases 2D array of dimension `1*n` containing values which are
|
|
* defined for some n (e.g., for fibonacci, `f(0)` and `f(1)` are defined, and
|
|
* `f(n)` where `n > 1` is evaluated on previous two values)
|
|
* @param nth_term the nth term of recurrence relation
|
|
* @param constant_or_sum_included whether the recurrence relation has a
|
|
* constant value or is evaluating sum of first n terms of the recurrence.
|
|
* @returns the nth term of the recurrence relation in `O(k^3. log(n))`, where k
|
|
* is number of rows and columns in `_mat` and `n` is the value of `nth_term`
|
|
* If constant_or_sum_included is true, returns the sum of first n terms in
|
|
* recurrence series
|
|
*/
|
|
template <typename T = int64_t>
|
|
T get_nth_term_of_recurrence_series(
|
|
const std::vector<std::vector<T>>& _mat,
|
|
const std::vector<std::vector<T>>& _base_cases, uint64_t nth_term,
|
|
bool constant_or_sum_included = false) {
|
|
assert(_mat.size() == _base_cases.back().size());
|
|
|
|
/**
|
|
* If nth term is a base case, then return base case directly.
|
|
*/
|
|
|
|
if (nth_term < _base_cases.back().size() - constant_or_sum_included) {
|
|
return _base_cases.back()[nth_term - constant_or_sum_included];
|
|
} else {
|
|
/**
|
|
* Else evaluate the expression, so multiplying _mat to itself (n -
|
|
* base_cases.length + 1 + constant_or_sum_included) times.
|
|
*/
|
|
std::vector<std::vector<T>> _res_matrix =
|
|
matrix_exponentiation(_mat, nth_term - _base_cases.back().size() +
|
|
1 + constant_or_sum_included);
|
|
|
|
/**
|
|
* After matrix exponentiation, multiply with the base case to evaluate
|
|
* the answer. The answer is always at the end of the array.
|
|
*/
|
|
std::vector<std::vector<T>> _res =
|
|
matrix_multiplication(_base_cases, _res_matrix);
|
|
|
|
return _res.back().back();
|
|
}
|
|
}
|
|
} // namespace linear_recurrence_matrix
|
|
} // namespace math
|
|
|
|
/**
|
|
* @brief Self test-implementations
|
|
* @returns void
|
|
*/
|
|
static void test() {
|
|
/*
|
|
* Example 1: [Fibonacci
|
|
* series](https://en.wikipedia.org/wiki/Fibonacci_number);
|
|
*
|
|
* [fn-2 fn-1] [0 1] == [fn-1 (fn-2 + fn-1)] => [fn-1 fn]
|
|
* [1 1]
|
|
*
|
|
* Let A = [fn-2 fn-1], and B = [0 1]
|
|
* [1 1],
|
|
*
|
|
* Since, A.B....(n-1 times) = [fn-1 fn]
|
|
* we can multiply B with itself n-1 times to obtain the required value
|
|
*/
|
|
std::vector<std::vector<int64_t>> fibonacci_matrix = {{0, 1}, {1, 1}},
|
|
fib_base_case = {{0, 1}};
|
|
|
|
assert(math::linear_recurrence_matrix::get_nth_term_of_recurrence_series(
|
|
fibonacci_matrix, fib_base_case, 11) == 89LL);
|
|
assert(math::linear_recurrence_matrix::get_nth_term_of_recurrence_series(
|
|
fibonacci_matrix, fib_base_case, 39) == 63245986LL);
|
|
/*
|
|
* Example 2: [Tribonacci series](https://oeis.org/A000073)
|
|
* [0 0 1]
|
|
* [fn-3 fn-2 fn-1] [1 0 1] = [(fn-2) (fn-1) (fn-3 + fn-2 + fn-1)]
|
|
* [0 1 1]
|
|
* => [fn-2 fn-1 fn]
|
|
*
|
|
* [0 0 1]
|
|
* Let A = [fn-3 fn-2 fn-1], and B = [1 0 1]
|
|
* [0 1 1]
|
|
*
|
|
* Since, A.B....(n-2 times) = [fn-2 fn-1 fn]
|
|
* we will have multiply B with itself n-2 times to obtain the required
|
|
* value ()
|
|
*/
|
|
|
|
std::vector<std::vector<int64_t>> tribonacci = {{0, 0, 1},
|
|
{1, 0, 1},
|
|
{0, 1, 1}},
|
|
trib_base_case = {
|
|
{0, 0, 1}}; // f0 = 0, f1 = 0, f2 = 1
|
|
|
|
assert(math::linear_recurrence_matrix::get_nth_term_of_recurrence_series(
|
|
tribonacci, trib_base_case, 11) == 149LL);
|
|
assert(math::linear_recurrence_matrix::get_nth_term_of_recurrence_series(
|
|
tribonacci, trib_base_case, 36) == 615693474LL);
|
|
|
|
/*
|
|
* Example 3: [Pell numbers](https://oeis.org/A000129)
|
|
* `f(n) = 2* f(n-1) + f(n-2); f(0) = f(1) = 2`
|
|
*
|
|
* [fn-2 fn-1] [0 1] = [(fn-1) fn-2 + 2*fn-1)]
|
|
* [1 2]
|
|
* => [fn-1 fn]
|
|
*
|
|
* Let A = [fn-2 fn-1], and B = [0 1]
|
|
* [1 2]
|
|
*/
|
|
|
|
std::vector<std::vector<int64_t>> pell_recurrence = {{0, 1}, {1, 2}},
|
|
pell_base_case = {
|
|
{2, 2}}; // `f0 = 2, f1 = 2`
|
|
|
|
assert(math::linear_recurrence_matrix::get_nth_term_of_recurrence_series(
|
|
pell_recurrence, pell_base_case, 15) == 551614LL);
|
|
assert(math::linear_recurrence_matrix::get_nth_term_of_recurrence_series(
|
|
pell_recurrence, pell_base_case, 23) == 636562078LL);
|
|
|
|
/*
|
|
* Example 4: Custom recurrence relation:
|
|
* Now the recurrence is of the form `a*f(n-1) + b*(fn-2) + ... + c`
|
|
* where `c` is the constant
|
|
* `f(n) = 2* f(n-1) + f(n-2) + 7; f(0) = f(1) = 2, c = 7`
|
|
*
|
|
* [1 0 1]
|
|
* [7, fn-2, fn-1] [0 0 1]
|
|
* [0 1 2]
|
|
* = [7, (fn-1), fn-2 + 2*fn-1) + 7]
|
|
*
|
|
* => [7, fn-1, fn]
|
|
* :: Series will be 2, 2, 13, 35, 90, 222, 541, 1311, 3170, 7658, 18493,
|
|
* 44651, 107802, 260262, 628333, 1516935, 362210, 8841362, 21344941,
|
|
* 51531251
|
|
*
|
|
* Let A = [7, fn-2, fn-1], and B = [1 0 1]
|
|
* [0 0 1]
|
|
* [0 1 2]
|
|
*/
|
|
|
|
std::vector<std::vector<int64_t>>
|
|
custom_recurrence = {{1, 0, 1}, {0, 0, 1}, {0, 1, 2}},
|
|
custom_base_case = {{7, 2, 2}}; // `c = 7, f0 = 2, f1 = 2`
|
|
|
|
assert(math::linear_recurrence_matrix::get_nth_term_of_recurrence_series(
|
|
custom_recurrence, custom_base_case, 10, 1) == 18493LL);
|
|
assert(math::linear_recurrence_matrix::get_nth_term_of_recurrence_series(
|
|
custom_recurrence, custom_base_case, 19, 1) == 51531251LL);
|
|
|
|
/*
|
|
* Example 5: Sum fibonacci sequence
|
|
* The following matrix evaluates the sum of first n fibonacci terms in
|
|
* O(27. log2(n)) time.
|
|
* `f(n) = f(n-1) + f(n-2); f(0) = 0, f(1) = 1`
|
|
*
|
|
* [1 0 0]
|
|
* [s(f, n-1), fn-2, fn-1] [1 0 1]
|
|
* [1 1 1]
|
|
* => [(s(f, n-1)+f(n-2)+f(n-1)), (fn-1), f(n-2)+f(n-1)]
|
|
*
|
|
* => [s(f, n-1)+f(n), fn-1, fn]
|
|
*
|
|
* => [s(f, n), fn-1, fn]
|
|
*
|
|
* Sum of first 20 fibonacci series:
|
|
* 0, 1, 2, 4, 7, 12, 20, 33, 54, 88, 143, 232, 376, 609, 986, 1596, 2583,
|
|
* 4180, 6764
|
|
* f0 f1 s(f,1)
|
|
* Let A = [0 1 1], and B = [0 1 1]
|
|
* [1 1 1]
|
|
* [0 0 1]
|
|
*/
|
|
|
|
std::vector<std::vector<int64_t>> sum_fibo_recurrence = {{0, 1, 1},
|
|
{1, 1, 1},
|
|
{0, 0, 1}},
|
|
sum_fibo_base_case = {
|
|
{0, 1, 1}}; // `f0 = 0, f1 = 1`
|
|
|
|
assert(math::linear_recurrence_matrix::get_nth_term_of_recurrence_series(
|
|
sum_fibo_recurrence, sum_fibo_base_case, 13, 1) == 609LL);
|
|
assert(math::linear_recurrence_matrix::get_nth_term_of_recurrence_series(
|
|
sum_fibo_recurrence, sum_fibo_base_case, 16, 1) == 2583LL);
|
|
/*
|
|
* Example 6: [Tribonacci sum series](https://oeis.org/A000073)
|
|
* [0 0 1 1]
|
|
* [fn-3 fn-2 fn-1 s(f, n-1)] [1 0 1 1]
|
|
* [0 1 1 1]
|
|
* [0 0 0 1]
|
|
*
|
|
* = [fn-2, fn-1, fn-3 + fn-2 + fn-1, (fn-3 + fn-2 + fn-1 + s(f, n-1))]
|
|
*
|
|
* => [fn-2, fn-1, fn, fn + s(f, n-1)]
|
|
*
|
|
* => [fn-2, fn-1, fn, s(f, n)]
|
|
*
|
|
* Sum of the series is: 0, 0, 1, 2, 4, 8, 15, 28, 52, 96, 177, 326, 600,
|
|
* 1104, 2031, 3736, 6872, 12640, 23249, 42762
|
|
*
|
|
* Let A = [fn-3 fn-2 fn-1 s(f, n-1)], and
|
|
* [0 0 1 1]
|
|
* B = [1 0 1 1]
|
|
* [0 1 1 1]
|
|
* [0 0 0 1]
|
|
*
|
|
* Since, A.B....(n-2 times) = [fn-2 fn-1 fn]
|
|
* we will have multiply B with itself n-2 times to obtain the required
|
|
* value
|
|
*/
|
|
|
|
std::vector<std::vector<int64_t>> tribonacci_sum = {{0, 0, 1, 1},
|
|
{1, 0, 1, 1},
|
|
{0, 1, 1, 1},
|
|
{0, 0, 0, 1}},
|
|
trib_sum_base_case = {{0, 0, 1, 1}};
|
|
// `f0 = 0, f1 = 0, f2 = 1, s = 1`
|
|
|
|
assert(math::linear_recurrence_matrix::get_nth_term_of_recurrence_series(
|
|
tribonacci_sum, trib_sum_base_case, 18, 1) == 23249LL);
|
|
assert(math::linear_recurrence_matrix::get_nth_term_of_recurrence_series(
|
|
tribonacci_sum, trib_sum_base_case, 19, 1) == 42762LL);
|
|
}
|
|
|
|
/**
|
|
* @brief Main function
|
|
* @returns 0 on exit
|
|
*/
|
|
int main() {
|
|
test(); // run self-test implementations
|
|
return 0;
|
|
}
|