mirror of
https://hub.njuu.cf/TheAlgorithms/C-Plus-Plus.git
synced 2023-10-11 13:05:55 +08:00
79fb528dad
* fix: clang-format for graph/ * remove graph.h
130 lines
4.0 KiB
C++
130 lines
4.0 KiB
C++
/* Implementation of Kosaraju's Algorithm to find out the strongly connected
|
|
components (SCCs) in a graph. Author:Anirban166
|
|
*/
|
|
|
|
#include <iostream>
|
|
#include <stack>
|
|
#include <vector>
|
|
|
|
/**
|
|
* Iterative function/method to print graph:
|
|
* @param a adjacency list representation of the graph
|
|
* @param V number of vertices
|
|
* @return void
|
|
**/
|
|
void print(const std::vector<std::vector<int> > &a, int V) {
|
|
for (int i = 0; i < V; i++) {
|
|
if (!a[i].empty()) {
|
|
std::cout << "i=" << i << "-->";
|
|
}
|
|
for (int j : a[i]) {
|
|
std::cout << j << " ";
|
|
}
|
|
if (!a[i].empty()) {
|
|
std::cout << std::endl;
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* //Recursive function/method to push vertices into stack passed as parameter:
|
|
* @param v vertices
|
|
* @param st stack passed by reference
|
|
* @param vis array to keep track of visited nodes (boolean type)
|
|
* @param adj adjacency list representation of the graph
|
|
* @return void
|
|
**/
|
|
void push_vertex(int v, std::stack<int> *st, std::vector<bool> *vis,
|
|
const std::vector<std::vector<int> > &adj) {
|
|
(*vis)[v] = true;
|
|
for (auto i = adj[v].begin(); i != adj[v].end(); i++) {
|
|
if ((*vis)[*i] == false) {
|
|
push_vertex(*i, st, vis, adj);
|
|
}
|
|
}
|
|
st->push(v);
|
|
}
|
|
|
|
/**
|
|
* //Recursive function/method to implement depth first traversal(dfs):
|
|
* @param v vertices
|
|
* @param vis array to keep track of visited nodes (boolean type)
|
|
* @param grev graph with reversed edges
|
|
* @return void
|
|
**/
|
|
void dfs(int v, std::vector<bool> *vis,
|
|
const std::vector<std::vector<int> > &grev) {
|
|
(*vis)[v] = true;
|
|
// cout<<v<<" ";
|
|
for (auto i = grev[v].begin(); i != grev[v].end(); i++) {
|
|
if ((*vis)[*i] == false) {
|
|
dfs(*i, vis, grev);
|
|
}
|
|
}
|
|
}
|
|
|
|
// function/method to implement Kosaraju's Algorithm:
|
|
/**
|
|
* Info about the method
|
|
* @param V vertices in graph
|
|
* @param adj array of vectors that represent a graph (adjacency list/array)
|
|
* @return int ( 0, 1, 2..and so on, only unsigned values as either there can be
|
|
no SCCs i.e. none(0) or there will be x no. of SCCs (x>0)) i.e. it returns the
|
|
count of (number of) strongly connected components (SCCs) in the graph.
|
|
(variable 'count_scc' within function)
|
|
**/
|
|
int kosaraju(int V, const std::vector<std::vector<int> > &adj) {
|
|
std::vector<bool> vis(V, false);
|
|
std::stack<int> st;
|
|
for (int v = 0; v < V; v++) {
|
|
if (vis[v] == false) {
|
|
push_vertex(v, &st, &vis, adj);
|
|
}
|
|
}
|
|
// making new graph (grev) with reverse edges as in adj[]:
|
|
std::vector<std::vector<int> > grev(V);
|
|
for (int i = 0; i < V + 1; i++) {
|
|
for (auto j = adj[i].begin(); j != adj[i].end(); j++) {
|
|
grev[*j].push_back(i);
|
|
}
|
|
}
|
|
// cout<<"grev="<<endl; ->debug statement
|
|
// print(grev,V); ->debug statement
|
|
// reinitialise visited to 0
|
|
for (int i = 0; i < V; i++) vis[i] = false;
|
|
int count_scc = 0;
|
|
while (!st.empty()) {
|
|
int t = st.top();
|
|
st.pop();
|
|
if (vis[t] == false) {
|
|
dfs(t, &vis, grev);
|
|
count_scc++;
|
|
}
|
|
}
|
|
// cout<<"count_scc="<<count_scc<<endl; //in case you want to print here
|
|
// itself, uncomment & change return type of function to void.
|
|
return count_scc;
|
|
}
|
|
|
|
// All critical/corner cases have been taken care of.
|
|
// Input your required values: (not hardcoded)
|
|
int main() {
|
|
int t = 0;
|
|
std::cin >> t;
|
|
while (t--) {
|
|
int a = 0, b = 0; // a->number of nodes, b->directed edges.
|
|
std::cin >> a >> b;
|
|
int m = 0, n = 0;
|
|
std::vector<std::vector<int> > adj(a + 1);
|
|
for (int i = 0; i < b; i++) // take total b inputs of 2 vertices each
|
|
// required to form an edge.
|
|
{
|
|
std::cin >> m >> n; // take input m,n denoting edge from m->n.
|
|
adj[m].push_back(n);
|
|
}
|
|
// pass number of nodes and adjacency array as parameters to function:
|
|
std::cout << kosaraju(a, adj) << std::endl;
|
|
}
|
|
return 0;
|
|
}
|