TheAlgorithms-C-Plus-Plus/math/quadratic_equations_complex_numbers.cpp
Stressed a0227012ec
feat: add Quadratic equations complex numbers (#2451)
* Added quadratic_equations_complex_numbers.cpp

* Added a demonstration

* Added test cases

* Added test cases

* Revert "Added test cases"

This reverts commit a1433a9318.

* Added test cases and made docs /// instead of //

* test: Added test cases for quadraticEquation
docs: Changed comment style

* test: more test cases
docs: added documentation

* docs: Updated description

* chore: removed redundant returns

* chore: fixed formatting to pass Code Formatter checks

* chore: apply suggestions from code review

Co-authored-by: realstealthninja <68815218+realstealthninja@users.noreply.github.com>

* test: Added exception test

* Update math/quadratic_equations_complex_numbers.cpp

Co-authored-by: Taj <tjgurwara99@users.noreply.github.com>

* Update math/quadratic_equations_complex_numbers.cpp

Co-authored-by: Taj <tjgurwara99@users.noreply.github.com>

* Update math/quadratic_equations_complex_numbers.cpp

Co-authored-by: Taj <tjgurwara99@users.noreply.github.com>

---------

Co-authored-by: David Leal <halfpacho@gmail.com>
Co-authored-by: realstealthninja <68815218+realstealthninja@users.noreply.github.com>
Co-authored-by: Taj <tjgurwara99@users.noreply.github.com>
2023-04-28 13:53:19 -06:00

190 lines
6.2 KiB
C++

/**
* @file
* @brief Calculate quadratic equation with complex roots, i.e. b^2 - 4ac < 0.
*
* @author [Renjian-buchai](https://github.com/Renjian-buchai)
*
* @description Calculates any quadratic equation in form ax^2 + bx + c.
*
* Quadratic equation:
* x = (-b +/- sqrt(b^2 - 4ac)) / 2a
*
* @example
* int main() {
* using std::array;
* using std::complex;
* using std::cout;
*
* array<complex<long double, 2> solutions = quadraticEquation(1, 2, 1);
* cout << solutions[0] << " " << solutions[1] << "\n";
*
* solutions = quadraticEquation(1, 1, 1); // Reusing solutions.
* cout << solutions[0] << " " << solutions[1] << "\n";
* return 0;
* }
*
* Output:
* (-1, 0) (-1, 0)
* (-0.5,0.866025) (-0.5,0.866025)
*/
#include <array> /// std::array
#include <cassert> /// assert
#include <cmath> /// std::sqrt, std::trunc, std::pow
#include <complex> /// std::complex
#include <exception> /// std::invalid_argument
#include <iomanip> /// std::setprecision
#include <iostream> /// std::cout
/**
* @namespace
* @brief Mathematical algorithms
*/
namespace math {
/**
* @brief Quadratic equation calculator.
* @param a quadratic coefficient.
* @param b linear coefficient.
* @param c constant
* @return Array containing the roots of quadratic equation, incl. complex
* root.
*/
std::array<std::complex<long double>, 2> quadraticEquation(long double a,
long double b,
long double c) {
if (a == 0) {
throw std::invalid_argument("quadratic coefficient cannot be 0");
}
long double discriminant = b * b - 4 * a * c;
std::array<std::complex<long double>, 2> solutions{0, 0};
if (discriminant == 0) {
solutions[0] = -b * 0.5 / a;
solutions[1] = -b * 0.5 / a;
return solutions;
}
// Complex root (discriminant < 0)
// Note that the left term (-b / 2a) is always real. The imaginary part
// appears when b^2 - 4ac < 0, so sqrt(b^2 - 4ac) has no real roots. So,
// the imaginary component is i * (+/-)sqrt(abs(b^2 - 4ac)) / 2a.
if (discriminant > 0) {
// Since discriminant > 0, there are only real roots. Therefore,
// imaginary component = 0.
solutions[0] = std::complex<long double>{
(-b - std::sqrt(discriminant)) * 0.5 / a, 0};
solutions[1] = std::complex<long double>{
(-b + std::sqrt(discriminant)) * 0.5 / a, 0};
return solutions;
}
// Since b^2 - 4ac is < 0, for faster computation, -discriminant is
// enough to make it positive.
solutions[0] = std::complex<long double>{
-b * 0.5 / a, -std::sqrt(-discriminant) * 0.5 / a};
solutions[1] = std::complex<long double>{
-b * 0.5 / a, std::sqrt(-discriminant) * 0.5 / a};
return solutions;
}
} // namespace math
/**
* @brief Asserts an array of complex numbers.
* @param input Input array of complex numbers. .
* @param expected Expected array of complex numbers.
* @param precision Precision to be asserted. Default=10
*/
void assertArray(std::array<std::complex<long double>, 2> input,
std::array<std::complex<long double>, 2> expected,
size_t precision = 10) {
long double exponent = std::pow(10, precision);
input[0].real(std::round(input[0].real() * exponent));
input[1].real(std::round(input[1].real() * exponent));
input[0].imag(std::round(input[0].imag() * exponent));
input[1].imag(std::round(input[1].imag() * exponent));
expected[0].real(std::round(expected[0].real() * exponent));
expected[1].real(std::round(expected[1].real() * exponent));
expected[0].imag(std::round(expected[0].imag() * exponent));
expected[1].imag(std::round(expected[1].imag() * exponent));
assert(input == expected);
}
/**
* @brief Self-test implementations to test quadraticEquation function.
* @note There are 4 different types of solutions: Real and equal, real,
* complex, complex and equal.
*/
static void test() {
// Values are equal and real.
std::cout << "Input: \n"
"a=1 \n"
"b=-2 \n"
"c=1 \n"
"Expected output: \n"
"(1, 0), (1, 0)\n\n";
std::array<std::complex<long double>, 2> equalCase{
std::complex<long double>{1, 0}, std::complex<long double>{1, 0}};
assert(math::quadraticEquation(1, -2, 1) == equalCase);
// Values are equal and complex.
std::cout << "Input: \n"
"a=1 \n"
"b=4 \n"
"c=5 \n"
"Expected output: \n"
"(-2, -1), (-2, 1)\n\n";
std::array<std::complex<long double>, 2> complexCase{
std::complex<long double>{-2, -1}, std::complex<long double>{-2, 1}};
assert(math::quadraticEquation(1, 4, 5) == complexCase);
// Values are real.
std::cout << "Input: \n"
"a=1 \n"
"b=5 \n"
"c=1 \n"
"Expected output: \n"
"(-4.7912878475, 0), (-0.2087121525, 0)\n\n";
std::array<std::complex<long double>, 2> floatCase{
std::complex<long double>{-4.7912878475, 0},
std::complex<long double>{-0.2087121525, 0}};
assertArray(math::quadraticEquation(1, 5, 1), floatCase);
// Values are complex.
std::cout << "Input: \n"
"a=1 \n"
"b=1 \n"
"c=1 \n"
"Expected output: \n"
"(-0.5, -0.8660254038), (-0.5, 0.8660254038)\n\n";
std::array<std::complex<long double>, 2> ifloatCase{
std::complex<long double>{-0.5, -0.8660254038},
std::complex<long double>{-0.5, 0.8660254038}};
assertArray(math::quadraticEquation(1, 1, 1), ifloatCase);
std::cout << "Exception test: \n"
"Input: \n"
"a=0 \n"
"b=0 \n"
"c=0\n"
"Expected output: Exception thrown \n";
try {
math::quadraticEquation(0, 0, 0);
} catch (std::invalid_argument& e) {
std::cout << "Exception thrown successfully \n";
}
}
/**
* @brief Main function
* @returns 0 on exit
*/
int main() {
test(); // Run self-test implementation.
return 0;
}