TheAlgorithms-C-Plus-Plus/math
DarkWarrior703 a77f0d3afe
Create double_factorial
Calculates the double factorial of an integer
2020-04-24 21:01:14 +03:00
..
binary_exponent.cpp Resolve typo errors 2020-04-04 18:16:40 +05:30
double_factorial Create double_factorial 2020-04-24 21:01:14 +03:00
eulers_totient_function.cpp Format Euler's Totient 2020-03-31 23:26:32 +02:00
factorial.cpp factorial.cpp (#561) 2019-12-05 23:02:52 +01:00
fast_power.cpp Add fast power (#691) 2019-12-26 09:30:30 +01:00
greatest_common_divisor_euclidean.cpp feat: add euclidean algorithm implementation of gcd 2019-12-28 01:10:53 -05:00
greatest_common_divisor.cpp Added factorisation technique (#604) 2019-12-04 09:24:48 +01:00
number_of_positive_divisors.cpp Modified description 2020-04-15 09:23:00 +05:30
power_for_huge_numbers.cpp Flatten the math directory (#657) 2019-11-28 14:34:13 +01:00
prime_factorization.cpp Flatten the math directory (#657) 2019-11-28 14:34:13 +01:00
prime_numbers.cpp Create PrimeNumbers.cpp (#607) 2019-12-04 09:05:08 +01:00
primes_up_to_10^8.cpp Prime (#585) 2019-12-07 08:33:23 +01:00
README.md Flatten the math directory (#657) 2019-11-28 14:34:13 +01:00
sieve_of_eratosthenes.cpp Flatten the math directory (#657) 2019-11-28 14:34:13 +01:00

Prime Factorization is a very important and useful technique to factorize any number into its prime factors. It has various applications in the field of number theory.

The method of prime factorization involves two function calls. First: Calculating all the prime number up till a certain range using the standard Sieve of Eratosthenes.

Second: Using the prime numbers to reduce the the given number and thus find all its prime factors.

The complexity of the solution involves approx. O(n logn) in calculating sieve of eratosthenes O(log n) in calculating the prime factors of the number. So in total approx. O(n logn).

Requirements: For compile you need the compiler flag for C++ 11