TheAlgorithms-C-Plus-Plus/graph/bridge_finding_with_tarjan_algorithm.cpp
2020-08-01 22:55:50 -07:00

82 lines
2.2 KiB
C++

/*
* Copyright : 2020 , MIT
* Author : Amit Kumar (offamitkumar)
* Last Modified Date: May 24, 2020
*
*/
#include <algorithm> // for min & max
#include <iostream> // for cout
#include <vector> // for std::vector
using std::cout;
using std::min;
using std::vector;
class Solution {
vector<vector<int>> graph;
vector<int> in_time, out_time;
int timer = 0;
vector<vector<int>> bridge;
vector<bool> visited;
void dfs(int current_node, int parent) {
visited.at(current_node) = true;
in_time[current_node] = out_time[current_node] = timer++;
for (auto& itr : graph[current_node]) {
if (itr == parent) {
continue;
}
if (!visited[itr]) {
dfs(itr, current_node);
if (out_time[itr] > in_time[current_node]) {
bridge.push_back({itr, current_node});
}
}
out_time[current_node] = min(out_time[current_node], out_time[itr]);
}
}
public:
vector<vector<int>> search_bridges(int n,
const vector<vector<int>>& connections) {
timer = 0;
graph.resize(n);
in_time.assign(n, 0);
visited.assign(n, false);
out_time.assign(n, 0);
for (auto& itr : connections) {
graph.at(itr[0]).push_back(itr[1]);
graph.at(itr[1]).push_back(itr[0]);
}
dfs(0, -1);
return bridge;
}
};
int main() {
Solution s1;
int number_of_node = 5;
vector<vector<int>> node;
node.push_back({0, 1});
node.push_back({1, 3});
node.push_back({1, 2});
node.push_back({2, 4});
/*
* 0 <--> 1 <---> 2
* ^ ^
* | |
* | |
* \/ \/
* 3 4
*
* In this graph there are 4 bridges [0,2] , [2,4] , [3,5] , [1,2]
*
* I assumed that the graph is bi-directional and connected.
*
*/
vector<vector<int>> bridges = s1.search_bridges(number_of_node, node);
cout << bridges.size() << " bridges found!\n";
for (auto& itr : bridges) {
cout << itr[0] << " --> " << itr[1] << '\n';
}
return 0;
}